Matches in SemOpenAlex for { <https://semopenalex.org/work/W1545200319> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W1545200319 endingPage "434" @default.
- W1545200319 startingPage "427" @default.
- W1545200319 abstract "Neural network training is usually formulated as a problem in function minimization. More precisely, if W are the weights defining a network’s architecture And e(W) is the weight depending error function, its gradient ∇e(W) is usually employed to arrive at the optimal weight set W*. There may be several ways of exploting this information and the simplest is just plain gradient descent, Which assumes an “Euclidean” structure in the underlying space of the W weights. Although very natural, this may result sometimes in quite slow network Learning in some problems, both in batch and, especially, on line error Minimization, where the global error function e(W) is replaced by an individual, Z pattern depending error function e(Z,W). Several procedures such as Adaptive learning rates or the addition of momentum terms have been proposed [6]. A different approach is suggested by the fact that in some instances, there May be metrics other than the euclidean one better suited to describe weight Space. This has been shown to be the case for a related problem, likelihood Estimates for parametric probability models [1], [4], for which a Riemannian structure Can be defined in weight space. The same reasoning can be applied for a Concrete network model, Multilayer Perceptrons (MLPs). When used in regression Problems, that is when the MLP tries to establish a relationship between An input X and output y for each pattern Z = (X,y), a probability model p(Z;W) = p(X,y; W) can be defined in pattern space so that the on line MLP Error function e(Z,W) = e(X,y,W) = (y - F(X,W)2/2 is seen as the log-likelihood Of p(Z;W); here F(X,W) denotes the network’s transfer function. This allows one to recast network learning as the likelihood estimation of a certain semi—parametric probability density p(X,y,W). In this setting, there is [2] a natural Riemannian metric on the space {p(X, y; W): W} of these densities, determined by a metric tensor given by the matrix $$ G(W) = Eleft[ {(nabla _W log p)(nabla _W log p)^t } right] = int {int {frac{{partial log p}} {{partial W}}} left( {frac{{partial log p}} {{partial W}}} right)} ^t p(X,y;W)dXdy. $$ G(W) is also known as the Fisher Information matrix, as it gives the variance of Cramer—Rao bound for the optimal parameter estimator. This suggests to use the “natural” gradient in the Riemannian setting, that is G(W)−1∇w e(X, y; W), Instead of the ordinary Euclidean gradient ∇w e(X, y; W)." @default.
- W1545200319 created "2016-06-24" @default.
- W1545200319 creator A5005149910 @default.
- W1545200319 creator A5031174137 @default.
- W1545200319 creator A5061648365 @default.
- W1545200319 date "2001-01-01" @default.
- W1545200319 modified "2023-09-24" @default.
- W1545200319 title "Natural Gradient Learning in NLDA Networks" @default.
- W1545200319 cites W1520168181 @default.
- W1545200319 cites W1841620889 @default.
- W1545200319 cites W1969810729 @default.
- W1545200319 cites W1970789124 @default.
- W1545200319 cites W2020107577 @default.
- W1545200319 cites W2047962774 @default.
- W1545200319 cites W2121624292 @default.
- W1545200319 cites W2128027505 @default.
- W1545200319 cites W2167374789 @default.
- W1545200319 cites W4210636998 @default.
- W1545200319 doi "https://doi.org/10.1007/3-540-45720-8_50" @default.
- W1545200319 hasPublicationYear "2001" @default.
- W1545200319 type Work @default.
- W1545200319 sameAs 1545200319 @default.
- W1545200319 citedByCount "4" @default.
- W1545200319 countsByYear W15452003192021 @default.
- W1545200319 countsByYear W15452003192022 @default.
- W1545200319 crossrefType "book-chapter" @default.
- W1545200319 hasAuthorship W1545200319A5005149910 @default.
- W1545200319 hasAuthorship W1545200319A5031174137 @default.
- W1545200319 hasAuthorship W1545200319A5061648365 @default.
- W1545200319 hasConcept C105795698 @default.
- W1545200319 hasConcept C111919701 @default.
- W1545200319 hasConcept C11413529 @default.
- W1545200319 hasConcept C114614502 @default.
- W1545200319 hasConcept C117251300 @default.
- W1545200319 hasConcept C118615104 @default.
- W1545200319 hasConcept C126255220 @default.
- W1545200319 hasConcept C129782007 @default.
- W1545200319 hasConcept C134466208 @default.
- W1545200319 hasConcept C14036430 @default.
- W1545200319 hasConcept C142730499 @default.
- W1545200319 hasConcept C147764199 @default.
- W1545200319 hasConcept C153258448 @default.
- W1545200319 hasConcept C154945302 @default.
- W1545200319 hasConcept C186450821 @default.
- W1545200319 hasConcept C202286095 @default.
- W1545200319 hasConcept C2524010 @default.
- W1545200319 hasConcept C2778572836 @default.
- W1545200319 hasConcept C28826006 @default.
- W1545200319 hasConcept C33923547 @default.
- W1545200319 hasConcept C41008148 @default.
- W1545200319 hasConcept C50644808 @default.
- W1545200319 hasConcept C60908668 @default.
- W1545200319 hasConcept C78458016 @default.
- W1545200319 hasConcept C86803240 @default.
- W1545200319 hasConceptScore W1545200319C105795698 @default.
- W1545200319 hasConceptScore W1545200319C111919701 @default.
- W1545200319 hasConceptScore W1545200319C11413529 @default.
- W1545200319 hasConceptScore W1545200319C114614502 @default.
- W1545200319 hasConceptScore W1545200319C117251300 @default.
- W1545200319 hasConceptScore W1545200319C118615104 @default.
- W1545200319 hasConceptScore W1545200319C126255220 @default.
- W1545200319 hasConceptScore W1545200319C129782007 @default.
- W1545200319 hasConceptScore W1545200319C134466208 @default.
- W1545200319 hasConceptScore W1545200319C14036430 @default.
- W1545200319 hasConceptScore W1545200319C142730499 @default.
- W1545200319 hasConceptScore W1545200319C147764199 @default.
- W1545200319 hasConceptScore W1545200319C153258448 @default.
- W1545200319 hasConceptScore W1545200319C154945302 @default.
- W1545200319 hasConceptScore W1545200319C186450821 @default.
- W1545200319 hasConceptScore W1545200319C202286095 @default.
- W1545200319 hasConceptScore W1545200319C2524010 @default.
- W1545200319 hasConceptScore W1545200319C2778572836 @default.
- W1545200319 hasConceptScore W1545200319C28826006 @default.
- W1545200319 hasConceptScore W1545200319C33923547 @default.
- W1545200319 hasConceptScore W1545200319C41008148 @default.
- W1545200319 hasConceptScore W1545200319C50644808 @default.
- W1545200319 hasConceptScore W1545200319C60908668 @default.
- W1545200319 hasConceptScore W1545200319C78458016 @default.
- W1545200319 hasConceptScore W1545200319C86803240 @default.
- W1545200319 hasLocation W15452003191 @default.
- W1545200319 hasOpenAccess W1545200319 @default.
- W1545200319 hasPrimaryLocation W15452003191 @default.
- W1545200319 hasRelatedWork W1503324822 @default.
- W1545200319 hasRelatedWork W1545200319 @default.
- W1545200319 hasRelatedWork W1925100372 @default.
- W1545200319 hasRelatedWork W1963509555 @default.
- W1545200319 hasRelatedWork W2161649813 @default.
- W1545200319 hasRelatedWork W2467511638 @default.
- W1545200319 hasRelatedWork W2471145436 @default.
- W1545200319 hasRelatedWork W2783654391 @default.
- W1545200319 hasRelatedWork W2783752873 @default.
- W1545200319 hasRelatedWork W2619729373 @default.
- W1545200319 isParatext "false" @default.
- W1545200319 isRetracted "false" @default.
- W1545200319 magId "1545200319" @default.
- W1545200319 workType "book-chapter" @default.