Matches in SemOpenAlex for { <https://semopenalex.org/work/W1546200464> ?p ?o ?g. }
- W1546200464 endingPage "2118" @default.
- W1546200464 startingPage "2108" @default.
- W1546200464 abstract "This paper targets learning robust image representation for single training sample per person face recognition. Motivated by the success of deep learning in image representation, we propose a supervised autoencoder, which is a new type of building block for deep architectures. There are two features distinct our supervised autoencoder from standard autoencoder. First, we enforce the faces with variants to be mapped with the canonical face of the person, for example, frontal face with neutral expression and normal illumination; Second, we enforce features corresponding to the same person to be similar. As a result, our supervised autoencoder extracts the features which are robust to variances in illumination, expression, occlusion, and pose, and facilitates the face recognition. We stack such supervised autoencoders to get the deep architecture and use it for extracting features in image representation. Experimental results on the AR, Extended Yale B, CMU-PIE, and Multi-PIE data sets demonstrate that by coupling with the commonly used sparse representation-based classification, our stacked supervised autoencoders-based face representation significantly outperforms the commonly used image representations in single sample per person face recognition, and it achieves higher recognition accuracy compared with other deep learning models, including the deep Lambertian network, in spite of much less training data and without any domain information. Moreover, supervised autoencoder can also be used for face verification, which further demonstrates its effectiveness for face representation." @default.
- W1546200464 created "2016-06-24" @default.
- W1546200464 creator A5034339267 @default.
- W1546200464 creator A5065964089 @default.
- W1546200464 creator A5071250538 @default.
- W1546200464 creator A5084058732 @default.
- W1546200464 creator A5090079801 @default.
- W1546200464 date "2015-10-01" @default.
- W1546200464 modified "2023-10-13" @default.
- W1546200464 title "Single Sample Face Recognition via Learning Deep Supervised Autoencoders" @default.
- W1546200464 cites W1461115072 @default.
- W1546200464 cites W1806891645 @default.
- W1546200464 cites W1975780119 @default.
- W1546200464 cites W2001947174 @default.
- W1546200464 cites W2003154692 @default.
- W1546200464 cites W2029546164 @default.
- W1546200464 cites W2038165640 @default.
- W1546200464 cites W2054502547 @default.
- W1546200464 cites W2075187489 @default.
- W1546200464 cites W2076434944 @default.
- W1546200464 cites W2092131162 @default.
- W1546200464 cites W2095189186 @default.
- W1546200464 cites W2097729189 @default.
- W1546200464 cites W2098693229 @default.
- W1546200464 cites W2100495367 @default.
- W1546200464 cites W2102544846 @default.
- W1546200464 cites W2107369107 @default.
- W1546200464 cites W2108767394 @default.
- W1546200464 cites W2115733720 @default.
- W1546200464 cites W2121647436 @default.
- W1546200464 cites W2123921160 @default.
- W1546200464 cites W2129812935 @default.
- W1546200464 cites W2132467081 @default.
- W1546200464 cites W2136922672 @default.
- W1546200464 cites W2145287260 @default.
- W1546200464 cites W2153169342 @default.
- W1546200464 cites W2155759509 @default.
- W1546200464 cites W2157364932 @default.
- W1546200464 cites W2163999590 @default.
- W1546200464 cites W2164122462 @default.
- W1546200464 cites W2165052637 @default.
- W1546200464 cites W2536045881 @default.
- W1546200464 cites W2912990735 @default.
- W1546200464 cites W4231109964 @default.
- W1546200464 cites W4236803189 @default.
- W1546200464 doi "https://doi.org/10.1109/tifs.2015.2446438" @default.
- W1546200464 hasPublicationYear "2015" @default.
- W1546200464 type Work @default.
- W1546200464 sameAs 1546200464 @default.
- W1546200464 citedByCount "182" @default.
- W1546200464 countsByYear W15462004642016 @default.
- W1546200464 countsByYear W15462004642017 @default.
- W1546200464 countsByYear W15462004642018 @default.
- W1546200464 countsByYear W15462004642019 @default.
- W1546200464 countsByYear W15462004642020 @default.
- W1546200464 countsByYear W15462004642021 @default.
- W1546200464 countsByYear W15462004642022 @default.
- W1546200464 countsByYear W15462004642023 @default.
- W1546200464 crossrefType "journal-article" @default.
- W1546200464 hasAuthorship W1546200464A5034339267 @default.
- W1546200464 hasAuthorship W1546200464A5065964089 @default.
- W1546200464 hasAuthorship W1546200464A5071250538 @default.
- W1546200464 hasAuthorship W1546200464A5084058732 @default.
- W1546200464 hasAuthorship W1546200464A5090079801 @default.
- W1546200464 hasConcept C101738243 @default.
- W1546200464 hasConcept C108583219 @default.
- W1546200464 hasConcept C144024400 @default.
- W1546200464 hasConcept C153180895 @default.
- W1546200464 hasConcept C154945302 @default.
- W1546200464 hasConcept C17744445 @default.
- W1546200464 hasConcept C199539241 @default.
- W1546200464 hasConcept C2776359362 @default.
- W1546200464 hasConcept C2779304628 @default.
- W1546200464 hasConcept C31510193 @default.
- W1546200464 hasConcept C36289849 @default.
- W1546200464 hasConcept C41008148 @default.
- W1546200464 hasConcept C50644808 @default.
- W1546200464 hasConcept C59404180 @default.
- W1546200464 hasConcept C94625758 @default.
- W1546200464 hasConceptScore W1546200464C101738243 @default.
- W1546200464 hasConceptScore W1546200464C108583219 @default.
- W1546200464 hasConceptScore W1546200464C144024400 @default.
- W1546200464 hasConceptScore W1546200464C153180895 @default.
- W1546200464 hasConceptScore W1546200464C154945302 @default.
- W1546200464 hasConceptScore W1546200464C17744445 @default.
- W1546200464 hasConceptScore W1546200464C199539241 @default.
- W1546200464 hasConceptScore W1546200464C2776359362 @default.
- W1546200464 hasConceptScore W1546200464C2779304628 @default.
- W1546200464 hasConceptScore W1546200464C31510193 @default.
- W1546200464 hasConceptScore W1546200464C36289849 @default.
- W1546200464 hasConceptScore W1546200464C41008148 @default.
- W1546200464 hasConceptScore W1546200464C50644808 @default.
- W1546200464 hasConceptScore W1546200464C59404180 @default.
- W1546200464 hasConceptScore W1546200464C94625758 @default.
- W1546200464 hasIssue "10" @default.
- W1546200464 hasLocation W15462004641 @default.
- W1546200464 hasOpenAccess W1546200464 @default.
- W1546200464 hasPrimaryLocation W15462004641 @default.