Matches in SemOpenAlex for { <https://semopenalex.org/work/W1546315089> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1546315089 abstract "Variational Bayes learning is widely used in statistical models that contain hidden variables, for example, normal mixtures, binomial mixtures, and hidden Markov models. To derive the variational Bayes learning algorithm, we need to determine the hyperparameters in the a priori distribution. In the present paper, we propose two different methods by which to optimize the hyperparameters for the two different purposes. In the first method, the hyperparameter is determined for minimization of the generalization error. In the second method, the hyperparameter is chosen so that the unknown hidden structure in the data can be discovered. Experiments are conducted to show that the optimal hyperparameters are different for the generalized learning and knowledge discovery." @default.
- W1546315089 created "2016-06-24" @default.
- W1546315089 creator A5014635641 @default.
- W1546315089 creator A5089768991 @default.
- W1546315089 date "2009-01-01" @default.
- W1546315089 modified "2023-09-23" @default.
- W1546315089 title "Optimal Hyperparameters for Generalized Learning and Knowledge Discovery in Variational Bayes" @default.
- W1546315089 cites W1594725708 @default.
- W1546315089 cites W2014927347 @default.
- W1546315089 cites W2120217353 @default.
- W1546315089 cites W2132474962 @default.
- W1546315089 cites W4233135949 @default.
- W1546315089 cites W4248597109 @default.
- W1546315089 doi "https://doi.org/10.1007/978-3-642-10677-4_54" @default.
- W1546315089 hasPublicationYear "2009" @default.
- W1546315089 type Work @default.
- W1546315089 sameAs 1546315089 @default.
- W1546315089 citedByCount "2" @default.
- W1546315089 countsByYear W15463150892013 @default.
- W1546315089 crossrefType "book-chapter" @default.
- W1546315089 hasAuthorship W1546315089A5014635641 @default.
- W1546315089 hasAuthorship W1546315089A5089768991 @default.
- W1546315089 hasConcept C105795698 @default.
- W1546315089 hasConcept C107673813 @default.
- W1546315089 hasConcept C111472728 @default.
- W1546315089 hasConcept C119857082 @default.
- W1546315089 hasConcept C12267149 @default.
- W1546315089 hasConcept C138885662 @default.
- W1546315089 hasConcept C153180895 @default.
- W1546315089 hasConcept C154945302 @default.
- W1546315089 hasConcept C207201462 @default.
- W1546315089 hasConcept C33923547 @default.
- W1546315089 hasConcept C41008148 @default.
- W1546315089 hasConcept C49781872 @default.
- W1546315089 hasConcept C52001869 @default.
- W1546315089 hasConcept C75553542 @default.
- W1546315089 hasConcept C8642999 @default.
- W1546315089 hasConcept C9810830 @default.
- W1546315089 hasConceptScore W1546315089C105795698 @default.
- W1546315089 hasConceptScore W1546315089C107673813 @default.
- W1546315089 hasConceptScore W1546315089C111472728 @default.
- W1546315089 hasConceptScore W1546315089C119857082 @default.
- W1546315089 hasConceptScore W1546315089C12267149 @default.
- W1546315089 hasConceptScore W1546315089C138885662 @default.
- W1546315089 hasConceptScore W1546315089C153180895 @default.
- W1546315089 hasConceptScore W1546315089C154945302 @default.
- W1546315089 hasConceptScore W1546315089C207201462 @default.
- W1546315089 hasConceptScore W1546315089C33923547 @default.
- W1546315089 hasConceptScore W1546315089C41008148 @default.
- W1546315089 hasConceptScore W1546315089C49781872 @default.
- W1546315089 hasConceptScore W1546315089C52001869 @default.
- W1546315089 hasConceptScore W1546315089C75553542 @default.
- W1546315089 hasConceptScore W1546315089C8642999 @default.
- W1546315089 hasConceptScore W1546315089C9810830 @default.
- W1546315089 hasLocation W15463150891 @default.
- W1546315089 hasOpenAccess W1546315089 @default.
- W1546315089 hasPrimaryLocation W15463150891 @default.
- W1546315089 hasRelatedWork W1528056001 @default.
- W1546315089 hasRelatedWork W165135607 @default.
- W1546315089 hasRelatedWork W1700637881 @default.
- W1546315089 hasRelatedWork W1724254233 @default.
- W1546315089 hasRelatedWork W1840386492 @default.
- W1546315089 hasRelatedWork W1974973100 @default.
- W1546315089 hasRelatedWork W1998562287 @default.
- W1546315089 hasRelatedWork W2007603454 @default.
- W1546315089 hasRelatedWork W2091522639 @default.
- W1546315089 hasRelatedWork W2106668826 @default.
- W1546315089 hasRelatedWork W2108075847 @default.
- W1546315089 hasRelatedWork W2123167923 @default.
- W1546315089 hasRelatedWork W2141212024 @default.
- W1546315089 hasRelatedWork W2156980782 @default.
- W1546315089 hasRelatedWork W2387988478 @default.
- W1546315089 hasRelatedWork W2396848693 @default.
- W1546315089 hasRelatedWork W2734383650 @default.
- W1546315089 hasRelatedWork W2810198369 @default.
- W1546315089 hasRelatedWork W2885229895 @default.
- W1546315089 hasRelatedWork W3161255900 @default.
- W1546315089 isParatext "false" @default.
- W1546315089 isRetracted "false" @default.
- W1546315089 magId "1546315089" @default.
- W1546315089 workType "book-chapter" @default.