Matches in SemOpenAlex for { <https://semopenalex.org/work/W1546359014> ?p ?o ?g. }
- W1546359014 endingPage "23" @default.
- W1546359014 startingPage "1" @default.
- W1546359014 abstract "Latent Dirichlet allocation (LDA) is a popular topic modeling technique in academia but less so in industry, especially in large-scale applications involving search engine and online advertising systems. A main underlying reason is that the topic models used have been too small in scale to be useful; for example, some of the largest LDA models reported in literature have up to 10 3 topics, which difficultly cover the long-tail semantic word sets. In this article, we show that the number of topics is a key factor that can significantly boost the utility of topic-modeling systems. In particular, we show that a “big” LDA model with at least 10 5 topics inferred from 10 9 search queries can achieve a significant improvement on industrial search engine and online advertising systems, both of which serve hundreds of millions of users. We develop a novel distributed system called Peacock to learn big LDA models from big data. The main features of Peacock include hierarchical distributed architecture, real-time prediction, and topic de-duplication. We empirically demonstrate that the Peacock system is capable of providing significant benefits via highly scalable LDA topic models for several industrial applications." @default.
- W1546359014 created "2016-06-24" @default.
- W1546359014 creator A5004393324 @default.
- W1546359014 creator A5010994296 @default.
- W1546359014 creator A5024996557 @default.
- W1546359014 creator A5029667848 @default.
- W1546359014 creator A5039117363 @default.
- W1546359014 creator A5045350805 @default.
- W1546359014 creator A5062026103 @default.
- W1546359014 creator A5063230535 @default.
- W1546359014 creator A5070073153 @default.
- W1546359014 creator A5087225204 @default.
- W1546359014 date "2015-07-15" @default.
- W1546359014 modified "2023-10-18" @default.
- W1546359014 title "Peacock" @default.
- W1546359014 cites W1659337733 @default.
- W1546359014 cites W1880262756 @default.
- W1546359014 cites W1889660637 @default.
- W1546359014 cites W1980147176 @default.
- W1546359014 cites W1983599491 @default.
- W1546359014 cites W1985125789 @default.
- W1546359014 cites W1991255919 @default.
- W1546359014 cites W1994616650 @default.
- W1546359014 cites W2001082470 @default.
- W1546359014 cites W2001975024 @default.
- W1546359014 cites W2026409515 @default.
- W1546359014 cites W2041517243 @default.
- W1546359014 cites W2056910091 @default.
- W1546359014 cites W2087937280 @default.
- W1546359014 cites W2090883204 @default.
- W1546359014 cites W2095158495 @default.
- W1546359014 cites W2109154616 @default.
- W1546359014 cites W2112284959 @default.
- W1546359014 cites W2118034653 @default.
- W1546359014 cites W2138996412 @default.
- W1546359014 cites W2144100511 @default.
- W1546359014 cites W2146341620 @default.
- W1546359014 cites W2150731624 @default.
- W1546359014 cites W2154610494 @default.
- W1546359014 cites W2166851633 @default.
- W1546359014 cites W2173213060 @default.
- W1546359014 cites W3007227167 @default.
- W1546359014 cites W3121060480 @default.
- W1546359014 cites W3122305203 @default.
- W1546359014 doi "https://doi.org/10.1145/2700497" @default.
- W1546359014 hasPublicationYear "2015" @default.
- W1546359014 type Work @default.
- W1546359014 sameAs 1546359014 @default.
- W1546359014 citedByCount "35" @default.
- W1546359014 countsByYear W15463590142015 @default.
- W1546359014 countsByYear W15463590142016 @default.
- W1546359014 countsByYear W15463590142017 @default.
- W1546359014 countsByYear W15463590142018 @default.
- W1546359014 countsByYear W15463590142019 @default.
- W1546359014 countsByYear W15463590142020 @default.
- W1546359014 countsByYear W15463590142021 @default.
- W1546359014 countsByYear W15463590142023 @default.
- W1546359014 crossrefType "journal-article" @default.
- W1546359014 hasAuthorship W1546359014A5004393324 @default.
- W1546359014 hasAuthorship W1546359014A5010994296 @default.
- W1546359014 hasAuthorship W1546359014A5024996557 @default.
- W1546359014 hasAuthorship W1546359014A5029667848 @default.
- W1546359014 hasAuthorship W1546359014A5039117363 @default.
- W1546359014 hasAuthorship W1546359014A5045350805 @default.
- W1546359014 hasAuthorship W1546359014A5062026103 @default.
- W1546359014 hasAuthorship W1546359014A5063230535 @default.
- W1546359014 hasAuthorship W1546359014A5070073153 @default.
- W1546359014 hasAuthorship W1546359014A5087225204 @default.
- W1546359014 hasConcept C121332964 @default.
- W1546359014 hasConcept C123657996 @default.
- W1546359014 hasConcept C124101348 @default.
- W1546359014 hasConcept C127413603 @default.
- W1546359014 hasConcept C138885662 @default.
- W1546359014 hasConcept C142362112 @default.
- W1546359014 hasConcept C153349607 @default.
- W1546359014 hasConcept C154945302 @default.
- W1546359014 hasConcept C171686336 @default.
- W1546359014 hasConcept C23123220 @default.
- W1546359014 hasConcept C2522767166 @default.
- W1546359014 hasConcept C26517878 @default.
- W1546359014 hasConcept C2778755073 @default.
- W1546359014 hasConcept C2780428219 @default.
- W1546359014 hasConcept C38652104 @default.
- W1546359014 hasConcept C41008148 @default.
- W1546359014 hasConcept C41895202 @default.
- W1546359014 hasConcept C48044578 @default.
- W1546359014 hasConcept C500882744 @default.
- W1546359014 hasConcept C62520636 @default.
- W1546359014 hasConcept C75684735 @default.
- W1546359014 hasConcept C77088390 @default.
- W1546359014 hasConcept C78519656 @default.
- W1546359014 hasConcept C90805587 @default.
- W1546359014 hasConceptScore W1546359014C121332964 @default.
- W1546359014 hasConceptScore W1546359014C123657996 @default.
- W1546359014 hasConceptScore W1546359014C124101348 @default.
- W1546359014 hasConceptScore W1546359014C127413603 @default.
- W1546359014 hasConceptScore W1546359014C138885662 @default.
- W1546359014 hasConceptScore W1546359014C142362112 @default.