Matches in SemOpenAlex for { <https://semopenalex.org/work/W1546663229> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W1546663229 abstract "Segmentation of tissues and structures from medical images is the first step in many image analysis applications developed for medical diagnosis. Development of treatment plans and evaluation of disease progression are other applications. These applications stem from the fact that diseases affect specific tissues or structures, lead to loss, atrophy (volume loss), and abnormalities. Consequently, an accurate, reliable, and automatic segmentation of these tissues and structures can improve diagnosis and treatment of diseases. Manual segmentation, although prone to rater drift and bias, is usually accurate but is impractical for large datasets because it is tedious and time consuming. Automatic segmentation methods can be useful for clinical applications if they have: 1) ability to segment like an expert; 2) excellent performance for diverse datasets; and 3) reasonable processing speed. Artificial Neural Networks (ANNs) have been developed for a wide range of applications such as function approximation, feature extraction, optimization, and classification. In particular, they have been developed for image enhancement, segmentation, registration, feature extraction, and object recognition. Among these, image segmentation is more important as it is a critical step for high-level processing such as object recognition. Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Hopfield, Cellular, and Pulse-Coupled neural networks have been used for image segmentation. These networks can be categorized into feed-forward (associative) and feedback (auto-associative) networks. MLP, Self-Organized Map (SOM), and RBF neural networks belong to the feed-forward networks while Hopfield, Cellular, and Pulse-Coupled neural networks belong to the feedback networks. This chapter is organized as follows. Section 2 explains methods that benefit from feedback networks such as Hopfield, Cellular, and Pulse-Coupled neural networks for image segmentation. In Section 3, we review the methods that use feedforward networks such as MLP and RBF neural networks. Then, we present our recent method. In this method, deep brain structures are segmented using Geometric Moment Invariants (GMIs) and MLP neural networks." @default.
- W1546663229 created "2016-06-24" @default.
- W1546663229 creator A5058761102 @default.
- W1546663229 creator A5090451407 @default.
- W1546663229 date "2011-04-11" @default.
- W1546663229 modified "2023-09-24" @default.
- W1546663229 title "Medical Image Segmentation Using Artificial Neural Networks" @default.
- W1546663229 cites W1536729381 @default.
- W1546663229 cites W1537799391 @default.
- W1546663229 cites W1546192743 @default.
- W1546663229 cites W1567354529 @default.
- W1546663229 cites W1576409039 @default.
- W1546663229 cites W1579944690 @default.
- W1546663229 cites W1663973292 @default.
- W1546663229 cites W1679913846 @default.
- W1546663229 cites W1959569837 @default.
- W1546663229 cites W1965997090 @default.
- W1546663229 cites W1966123133 @default.
- W1546663229 cites W1970097244 @default.
- W1546663229 cites W1976018540 @default.
- W1546663229 cites W2007981068 @default.
- W1546663229 cites W2027246093 @default.
- W1546663229 cites W2037920251 @default.
- W1546663229 cites W2041297982 @default.
- W1546663229 cites W2056717940 @default.
- W1546663229 cites W2080432248 @default.
- W1546663229 cites W2091327364 @default.
- W1546663229 cites W2098900497 @default.
- W1546663229 cites W2098979973 @default.
- W1546663229 cites W2101526954 @default.
- W1546663229 cites W2107025852 @default.
- W1546663229 cites W2116376144 @default.
- W1546663229 cites W2116379401 @default.
- W1546663229 cites W2119107075 @default.
- W1546663229 cites W2123624058 @default.
- W1546663229 cites W2125992679 @default.
- W1546663229 cites W2128084896 @default.
- W1546663229 cites W2130257032 @default.
- W1546663229 cites W2137133018 @default.
- W1546663229 cites W2138106420 @default.
- W1546663229 cites W2151507565 @default.
- W1546663229 cites W2153087078 @default.
- W1546663229 cites W2156589816 @default.
- W1546663229 cites W2157732540 @default.
- W1546663229 cites W2160121923 @default.
- W1546663229 cites W2161318211 @default.
- W1546663229 cites W2163037140 @default.
- W1546663229 cites W2372326752 @default.
- W1546663229 cites W2376996146 @default.
- W1546663229 doi "https://doi.org/10.5772/16103" @default.
- W1546663229 hasPublicationYear "2011" @default.
- W1546663229 type Work @default.
- W1546663229 sameAs 1546663229 @default.
- W1546663229 citedByCount "14" @default.
- W1546663229 countsByYear W15466632292012 @default.
- W1546663229 countsByYear W15466632292013 @default.
- W1546663229 countsByYear W15466632292015 @default.
- W1546663229 countsByYear W15466632292016 @default.
- W1546663229 countsByYear W15466632292017 @default.
- W1546663229 crossrefType "book-chapter" @default.
- W1546663229 hasAuthorship W1546663229A5058761102 @default.
- W1546663229 hasAuthorship W1546663229A5090451407 @default.
- W1546663229 hasBestOaLocation W15466632291 @default.
- W1546663229 hasConcept C115961682 @default.
- W1546663229 hasConcept C124504099 @default.
- W1546663229 hasConcept C153180895 @default.
- W1546663229 hasConcept C154945302 @default.
- W1546663229 hasConcept C31972630 @default.
- W1546663229 hasConcept C41008148 @default.
- W1546663229 hasConcept C50644808 @default.
- W1546663229 hasConcept C89600930 @default.
- W1546663229 hasConceptScore W1546663229C115961682 @default.
- W1546663229 hasConceptScore W1546663229C124504099 @default.
- W1546663229 hasConceptScore W1546663229C153180895 @default.
- W1546663229 hasConceptScore W1546663229C154945302 @default.
- W1546663229 hasConceptScore W1546663229C31972630 @default.
- W1546663229 hasConceptScore W1546663229C41008148 @default.
- W1546663229 hasConceptScore W1546663229C50644808 @default.
- W1546663229 hasConceptScore W1546663229C89600930 @default.
- W1546663229 hasLocation W15466632291 @default.
- W1546663229 hasLocation W15466632292 @default.
- W1546663229 hasOpenAccess W1546663229 @default.
- W1546663229 hasPrimaryLocation W15466632291 @default.
- W1546663229 hasRelatedWork W1507266234 @default.
- W1546663229 hasRelatedWork W1631910785 @default.
- W1546663229 hasRelatedWork W1669643531 @default.
- W1546663229 hasRelatedWork W1721780360 @default.
- W1546663229 hasRelatedWork W2110230079 @default.
- W1546663229 hasRelatedWork W2117664411 @default.
- W1546663229 hasRelatedWork W2117933325 @default.
- W1546663229 hasRelatedWork W2122581818 @default.
- W1546663229 hasRelatedWork W2159066190 @default.
- W1546663229 hasRelatedWork W2739874619 @default.
- W1546663229 isParatext "false" @default.
- W1546663229 isRetracted "false" @default.
- W1546663229 magId "1546663229" @default.
- W1546663229 workType "book-chapter" @default.