Matches in SemOpenAlex for { <https://semopenalex.org/work/W1546972227> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1546972227 endingPage "24" @default.
- W1546972227 startingPage "19" @default.
- W1546972227 abstract "Abstract- In multi-database mining, there can be many localpatterns (frequent itemsets or association rules) in each database.At the end of multi-database mining, it is necessary to analyzethese local patterns to gain global patterns, when putting all thedata from the databases into a single dataset can destroy impor-tant information that reflect the distribution of global patterns.This paper develops an algorithm for synthesizing local patternsin multi-database is proposed. This approach is particularly fitto find potentially useful exceptions. The proposed method hasbeen evaluated experimentally. The experimental results haveshown that this method is efficient and appropriate to identifyingexceptional patterns. jlldex Terms- multi-database mining; local pattern evaluation;local pattern; global patteru; exceptional patternL INTRODUCTIONWith the increasing development and application of distributeddatabase technique and computer network, there exist many distributeddatabases in a business or financial organization. For example, a largecompany has many subsidiary companies, and each subsidiary com-pany has its own database, all of the databases from each subsidiarycompany are relevant or irrelevant in logic, but they are distributed indifferent places. Different subsidiary company has different functionsin helping the head company to make decisions. To make decisionsfor the development of company, the decision maker of the head com-pany needs to know every database's interesting pattern or regulationand then synthetically evaluate these local patterns to generate globalpatterns.It would appear to be unrealistic to collect data from differentbranches for centralized processing because of the potentially volumeof data [20]. For example, different branches of Wal-Mart collect 20million transactions per day. This is more than the rate at which datacan feasibly be collected and analyzed by using today's computingpower.On the other hand, because of data privacy and related issues, it ispossible that some databases of an organization can share their asso-ciation rules but not their original data. Therefore, mining associationrules from different databases and forwarding the rules (rather thanthe original raw data) to the central company headquarter provides afeasible way dealing with multiple database problems [19].However, current data mining researches focus on mining in mono-database, but mono-database mining is different from multi-databasemining because of their different data structure. So we need to comeup with other solutions to analyze the data in multi-databases insteadof using the technique in mono-database mining. This paper mainlydiscusses the pattern evaluation process at the end of data miningprocess and presents a method for identifying exceptional patterns." @default.
- W1546972227 created "2016-06-24" @default.
- W1546972227 creator A5042544331 @default.
- W1546972227 creator A5046345736 @default.
- W1546972227 creator A5074852078 @default.
- W1546972227 creator A5080788081 @default.
- W1546972227 date "2004-01-01" @default.
- W1546972227 modified "2023-09-28" @default.
- W1546972227 title "Identifying Global Exceptional Patterns In Multi-database Mining" @default.
- W1546972227 cites W1484732323 @default.
- W1546972227 cites W1523472376 @default.
- W1546972227 cites W1535979681 @default.
- W1546972227 cites W1542645505 @default.
- W1546972227 cites W1549661918 @default.
- W1546972227 cites W1568259511 @default.
- W1546972227 cites W1571827937 @default.
- W1546972227 cites W2017394090 @default.
- W1546972227 cites W2037047753 @default.
- W1546972227 cites W2082490090 @default.
- W1546972227 cites W2093456341 @default.
- W1546972227 cites W2095700816 @default.
- W1546972227 cites W2096322311 @default.
- W1546972227 cites W2096761455 @default.
- W1546972227 cites W2100406636 @default.
- W1546972227 cites W2110039140 @default.
- W1546972227 cites W2110209868 @default.
- W1546972227 cites W2137860515 @default.
- W1546972227 cites W2149127516 @default.
- W1546972227 cites W2167619656 @default.
- W1546972227 cites W2580465468 @default.
- W1546972227 cites W2688249815 @default.
- W1546972227 hasPublicationYear "2004" @default.
- W1546972227 type Work @default.
- W1546972227 sameAs 1546972227 @default.
- W1546972227 citedByCount "17" @default.
- W1546972227 countsByYear W15469722272012 @default.
- W1546972227 countsByYear W15469722272014 @default.
- W1546972227 countsByYear W15469722272015 @default.
- W1546972227 countsByYear W15469722272017 @default.
- W1546972227 countsByYear W15469722272021 @default.
- W1546972227 crossrefType "journal-article" @default.
- W1546972227 hasAuthorship W1546972227A5042544331 @default.
- W1546972227 hasAuthorship W1546972227A5046345736 @default.
- W1546972227 hasAuthorship W1546972227A5074852078 @default.
- W1546972227 hasAuthorship W1546972227A5080788081 @default.
- W1546972227 hasConcept C124101348 @default.
- W1546972227 hasConcept C193524817 @default.
- W1546972227 hasConcept C2781462938 @default.
- W1546972227 hasConcept C41008148 @default.
- W1546972227 hasConcept C77088390 @default.
- W1546972227 hasConceptScore W1546972227C124101348 @default.
- W1546972227 hasConceptScore W1546972227C193524817 @default.
- W1546972227 hasConceptScore W1546972227C2781462938 @default.
- W1546972227 hasConceptScore W1546972227C41008148 @default.
- W1546972227 hasConceptScore W1546972227C77088390 @default.
- W1546972227 hasLocation W15469722271 @default.
- W1546972227 hasOpenAccess W1546972227 @default.
- W1546972227 hasPrimaryLocation W15469722271 @default.
- W1546972227 hasRelatedWork W139115528 @default.
- W1546972227 hasRelatedWork W1484413656 @default.
- W1546972227 hasRelatedWork W1506285740 @default.
- W1546972227 hasRelatedWork W1549661918 @default.
- W1546972227 hasRelatedWork W1571827937 @default.
- W1546972227 hasRelatedWork W1597161471 @default.
- W1546972227 hasRelatedWork W1963640525 @default.
- W1546972227 hasRelatedWork W1996099383 @default.
- W1546972227 hasRelatedWork W2064853889 @default.
- W1546972227 hasRelatedWork W2091367000 @default.
- W1546972227 hasRelatedWork W2093456341 @default.
- W1546972227 hasRelatedWork W2095344655 @default.
- W1546972227 hasRelatedWork W2095700816 @default.
- W1546972227 hasRelatedWork W2110039140 @default.
- W1546972227 hasRelatedWork W2110209868 @default.
- W1546972227 hasRelatedWork W2118955864 @default.
- W1546972227 hasRelatedWork W2121677895 @default.
- W1546972227 hasRelatedWork W2139631051 @default.
- W1546972227 hasRelatedWork W2166559705 @default.
- W1546972227 hasRelatedWork W50303208 @default.
- W1546972227 hasVolume "3" @default.
- W1546972227 isParatext "false" @default.
- W1546972227 isRetracted "false" @default.
- W1546972227 magId "1546972227" @default.
- W1546972227 workType "article" @default.