Matches in SemOpenAlex for { <https://semopenalex.org/work/W1547307788> ?p ?o ?g. }
- W1547307788 endingPage "350" @default.
- W1547307788 startingPage "341" @default.
- W1547307788 abstract "This paper reports on a new high precision measurement of the form factors of the K_{L}to pi^{pm} mu^{mp} nu_{mu} decay. The data sample of about 2.3$times 10^{6}$ events was recorded in 1999 by the NA48 experiment at CERN. Studying the Dalitz plot density we measured a linear, $lambda^{'}_{+} = (20.5pm 2.2_{stat} pm 2.4_{syst})times 10^{-3}$, and a quadratic, $lambda^{''}_{+} = (2.6pm 0.9_{stat} pm 1.0_{syst})times 10^{-3}$ term in the power expansion of the vector form factor. No evidence was found for a second order term for the scalar form factor; the linear slope was determined to be $lambda_{0} = (9.5pm 1.1_{stat} pm 0.8_{syst})times 10^{-3}$. Using a linear fit our results were: $lambda_{+} = (26.7pm 0.6_{stat} pm 0.8_{syst} )times 10^{-3}$ and, $lambda_{0} = (11.7pm 0.7_{stat} pm 1.0_{syst})times 10^{-3}$. A pole fit of the form factors yields: $m_V = (905 pm 9_{stat} pm 17_{syst})$ MeV/c$^2$ and $m_S = (1400 pm 46_{stat} pm 53_{syst})$ MeV/c$^2$." @default.
- W1547307788 created "2016-06-24" @default.
- W1547307788 creator A5000523990 @default.
- W1547307788 creator A5000527429 @default.
- W1547307788 creator A5000844159 @default.
- W1547307788 creator A5002027477 @default.
- W1547307788 creator A5002295047 @default.
- W1547307788 creator A5004347883 @default.
- W1547307788 creator A5004849481 @default.
- W1547307788 creator A5006565106 @default.
- W1547307788 creator A5006579472 @default.
- W1547307788 creator A5006600187 @default.
- W1547307788 creator A5006926737 @default.
- W1547307788 creator A5007968997 @default.
- W1547307788 creator A5008542905 @default.
- W1547307788 creator A5010087076 @default.
- W1547307788 creator A5010496496 @default.
- W1547307788 creator A5012622138 @default.
- W1547307788 creator A5012714539 @default.
- W1547307788 creator A5012834151 @default.
- W1547307788 creator A5014118097 @default.
- W1547307788 creator A5014266180 @default.
- W1547307788 creator A5015717365 @default.
- W1547307788 creator A5018004736 @default.
- W1547307788 creator A5018388207 @default.
- W1547307788 creator A5018597250 @default.
- W1547307788 creator A5020737288 @default.
- W1547307788 creator A5022146138 @default.
- W1547307788 creator A5022737940 @default.
- W1547307788 creator A5022954166 @default.
- W1547307788 creator A5023017890 @default.
- W1547307788 creator A5023275724 @default.
- W1547307788 creator A5023346684 @default.
- W1547307788 creator A5023803883 @default.
- W1547307788 creator A5023979480 @default.
- W1547307788 creator A5025286217 @default.
- W1547307788 creator A5025627335 @default.
- W1547307788 creator A5026047984 @default.
- W1547307788 creator A5026123108 @default.
- W1547307788 creator A5026318336 @default.
- W1547307788 creator A5026353535 @default.
- W1547307788 creator A5026410365 @default.
- W1547307788 creator A5026689070 @default.
- W1547307788 creator A5028332092 @default.
- W1547307788 creator A5028799019 @default.
- W1547307788 creator A5029876001 @default.
- W1547307788 creator A5030771188 @default.
- W1547307788 creator A5030791940 @default.
- W1547307788 creator A5032002364 @default.
- W1547307788 creator A5032022458 @default.
- W1547307788 creator A5032034329 @default.
- W1547307788 creator A5033261727 @default.
- W1547307788 creator A5036308772 @default.
- W1547307788 creator A5036519135 @default.
- W1547307788 creator A5036947153 @default.
- W1547307788 creator A5038180335 @default.
- W1547307788 creator A5038379583 @default.
- W1547307788 creator A5039365805 @default.
- W1547307788 creator A5040102140 @default.
- W1547307788 creator A5041017784 @default.
- W1547307788 creator A5041777371 @default.
- W1547307788 creator A5041882812 @default.
- W1547307788 creator A5042287792 @default.
- W1547307788 creator A5042709729 @default.
- W1547307788 creator A5042711903 @default.
- W1547307788 creator A5043006108 @default.
- W1547307788 creator A5043179449 @default.
- W1547307788 creator A5043834180 @default.
- W1547307788 creator A5044129988 @default.
- W1547307788 creator A5044338371 @default.
- W1547307788 creator A5044526206 @default.
- W1547307788 creator A5044936917 @default.
- W1547307788 creator A5045000793 @default.
- W1547307788 creator A5045646652 @default.
- W1547307788 creator A5048969569 @default.
- W1547307788 creator A5049100191 @default.
- W1547307788 creator A5049928629 @default.
- W1547307788 creator A5049937313 @default.
- W1547307788 creator A5050068694 @default.
- W1547307788 creator A5051350860 @default.
- W1547307788 creator A5051739204 @default.
- W1547307788 creator A5051829602 @default.
- W1547307788 creator A5052317671 @default.
- W1547307788 creator A5052538607 @default.
- W1547307788 creator A5053331654 @default.
- W1547307788 creator A5053420561 @default.
- W1547307788 creator A5053523477 @default.
- W1547307788 creator A5053904516 @default.
- W1547307788 creator A5054453056 @default.
- W1547307788 creator A5055020215 @default.
- W1547307788 creator A5055406945 @default.
- W1547307788 creator A5055460418 @default.
- W1547307788 creator A5056067467 @default.
- W1547307788 creator A5056697974 @default.
- W1547307788 creator A5056984683 @default.
- W1547307788 creator A5057035451 @default.
- W1547307788 creator A5057586634 @default.
- W1547307788 creator A5058989263 @default.