Matches in SemOpenAlex for { <https://semopenalex.org/work/W1547887751> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1547887751 endingPage "473" @default.
- W1547887751 startingPage "459" @default.
- W1547887751 abstract "Introducing products between multivectors of Cl(0,7) and octonions, resulting in an octonion, and leading to the non-associative standard octonionic product in a particular case, we generalize the octonionic X-product, associated with the transformation rules for bosonic and fermionic fields on the tangent bundle over the 7-sphere, and the XY-product. We also present the formalism necessary to construct Clifford algebra-parametrized octonions. Finally we introduce a method to construct generalized octonionic algebras, where their octonionic units are parametrized by arbitrary Clifford multivectors. The products between Clifford multivectors and octonions, leading to an octonion, are shown to share graded-associative, supersymmetric properties. We also investigate the generalization of Moufang identities, for each one of the products introduced. The X-product equals twice the parallelizing torsion, given by the torsion tensor, and is used to investigate the S7 Kac-Moody algebra. The X-product has also been used to obtain triality maps and G2 actions, and it leads naturally to remarkable geometric and topological properties, for instance the Hopf fibrations and twistor formalism in ten dimensions. The paramount importance of octonions in the search for unification is based, for instance, in the fact that by extending the division-algebra-valued superalgebras to octonions, in D=11 an octonionic generalized Poincare superalgebra can be constructed, the so-called octonionic M-algebra that describes the octonionic M-theory where the octonionic super-2-brane and the octonionic super-5-brane sectors are shown to be equivalent. Also, there are other vast generalizations and applications of the octonionic formalism such as the classification of quaternionic and octonionic spinors and the pseudo-octonionic formalism." @default.
- W1547887751 created "2016-06-24" @default.
- W1547887751 creator A5016993458 @default.
- W1547887751 creator A5049529424 @default.
- W1547887751 date "2006-07-01" @default.
- W1547887751 modified "2023-10-14" @default.
- W1547887751 title "Clifford algebra-parametrized octonions and generalizations" @default.
- W1547887751 cites W113323980 @default.
- W1547887751 cites W1632096018 @default.
- W1547887751 cites W1664152391 @default.
- W1547887751 cites W1677038102 @default.
- W1547887751 cites W1968100105 @default.
- W1547887751 cites W1979965716 @default.
- W1547887751 cites W2028584576 @default.
- W1547887751 cites W2030492643 @default.
- W1547887751 cites W2050950748 @default.
- W1547887751 cites W2078394503 @default.
- W1547887751 cites W2084774579 @default.
- W1547887751 cites W2911683105 @default.
- W1547887751 cites W2952930671 @default.
- W1547887751 cites W3037037800 @default.
- W1547887751 cites W3101249622 @default.
- W1547887751 cites W3101280026 @default.
- W1547887751 cites W3122166690 @default.
- W1547887751 cites W564058685 @default.
- W1547887751 cites W641490683 @default.
- W1547887751 doi "https://doi.org/10.1016/j.jalgebra.2006.04.004" @default.
- W1547887751 hasPublicationYear "2006" @default.
- W1547887751 type Work @default.
- W1547887751 sameAs 1547887751 @default.
- W1547887751 citedByCount "11" @default.
- W1547887751 countsByYear W15478877512012 @default.
- W1547887751 countsByYear W15478877512013 @default.
- W1547887751 countsByYear W15478877512015 @default.
- W1547887751 countsByYear W15478877512018 @default.
- W1547887751 countsByYear W15478877512019 @default.
- W1547887751 crossrefType "journal-article" @default.
- W1547887751 hasAuthorship W1547887751A5016993458 @default.
- W1547887751 hasAuthorship W1547887751A5049529424 @default.
- W1547887751 hasBestOaLocation W15478877511 @default.
- W1547887751 hasConcept C100856211 @default.
- W1547887751 hasConcept C136119220 @default.
- W1547887751 hasConcept C138354692 @default.
- W1547887751 hasConcept C200127275 @default.
- W1547887751 hasConcept C202444582 @default.
- W1547887751 hasConcept C203249530 @default.
- W1547887751 hasConcept C2524010 @default.
- W1547887751 hasConcept C33923547 @default.
- W1547887751 hasConcept C51255310 @default.
- W1547887751 hasConcept C67996461 @default.
- W1547887751 hasConceptScore W1547887751C100856211 @default.
- W1547887751 hasConceptScore W1547887751C136119220 @default.
- W1547887751 hasConceptScore W1547887751C138354692 @default.
- W1547887751 hasConceptScore W1547887751C200127275 @default.
- W1547887751 hasConceptScore W1547887751C202444582 @default.
- W1547887751 hasConceptScore W1547887751C203249530 @default.
- W1547887751 hasConceptScore W1547887751C2524010 @default.
- W1547887751 hasConceptScore W1547887751C33923547 @default.
- W1547887751 hasConceptScore W1547887751C51255310 @default.
- W1547887751 hasConceptScore W1547887751C67996461 @default.
- W1547887751 hasIssue "2" @default.
- W1547887751 hasLocation W15478877511 @default.
- W1547887751 hasLocation W15478877512 @default.
- W1547887751 hasLocation W15478877513 @default.
- W1547887751 hasOpenAccess W1547887751 @default.
- W1547887751 hasPrimaryLocation W15478877511 @default.
- W1547887751 hasRelatedWork W1547887751 @default.
- W1547887751 hasRelatedWork W2082304409 @default.
- W1547887751 hasRelatedWork W2095442740 @default.
- W1547887751 hasRelatedWork W2227913379 @default.
- W1547887751 hasRelatedWork W2502956037 @default.
- W1547887751 hasRelatedWork W2887394578 @default.
- W1547887751 hasRelatedWork W4226142692 @default.
- W1547887751 hasRelatedWork W4289108328 @default.
- W1547887751 hasRelatedWork W4297833848 @default.
- W1547887751 hasRelatedWork W47991966 @default.
- W1547887751 hasVolume "301" @default.
- W1547887751 isParatext "false" @default.
- W1547887751 isRetracted "false" @default.
- W1547887751 magId "1547887751" @default.
- W1547887751 workType "article" @default.