Matches in SemOpenAlex for { <https://semopenalex.org/work/W1548051194> ?p ?o ?g. }
- W1548051194 abstract "The topic of the thesis is related to statistical mechanics and probability theory from one side, and to the representation theory of ``big'' groups on the other side. A typical example of a ``big'' group is the union of unitary groups naturally embedded one into another; it is called the infinite--dimensional unitary group. In statistical mechanics we deal with models of random discrete surfaces in R^3 or, equivalently, random 3-D Young diagrams. The thesis starts from the study of the objects of purely combinatorial origin: we investigate various measures on 3-D Young diagrams confined to AxBxC box. We study a 2--parametric family of measures deforming the uniform probability measure on 3-D Young diagrams in a box and prove a variety of the results about these measures: we construct a family of Markov chains which agree with the measures and, in particular, lead to an efficient random sampling algorithm; we find the corresponding generalization of the well-known MacMahon product formula for the number of 3-D Young diagrams in a given box; we compute the correlation functions which describe the local geometry of random 3-D Young diagrams and study their asymptotics as A, B, C tend to infinity and q tends to 1. The second part of the thesis deals with combinatorial structures related to the infinite-dimensional unitary group. The characters (i.e. normalized central positive-definite functions on the group) of the infinite-dimensional unitary group are in bijection with probability measures on paths in the so-called Gelfand--Tsetlin graph possessing a certain Gibbs property. Through combinatorial bijections paths in Gelfand--Tsetlin graph can be viewed as stepped surfaces or 3-D Young diagrams (this time, of the infinite volume). Then the Gibbs property turns into the uniformity of certain conditional measures on 3-D Young diagrams. In the thesis we study a 1-parametric deformation of this Gibbs property. Our deformation is closely related to the measures on 3-D Young diagrams introduced in the first part of the thesis. Although the deformation is purely combinatorial, there are indications that these new q-Gibbs measures are still related to representation theory, but with unitary groups replaced by their q-deformations --- quantum groups. We prove a classification theorem for the q-Gibbs measures and discuss their relations with certain classes of matrices with non-negative minors and with limits of symmetric polynomials as the number of variable tens to infinite. Finally, in the last part of thesis we study a problem of purely representation--theoretic origin. We deal with a two-parametric family of representations of the infinite-dimensional unitary group introduced by Olshanski as a substitute of the non-existent regular representation of the infinite-dimensional unitary group. We seek for an answer to the question whether these representations are disjoint (i.e. contain no isomorphic subrepresentations). In order to prove the disjointness we reduce this problem to the analysis of certain measures on Gelfand--Tsetlin graph or, in other words, again to the study of random Young diagrams." @default.
- W1548051194 created "2016-06-24" @default.
- W1548051194 creator A5005808127 @default.
- W1548051194 date "2011-10-06" @default.
- W1548051194 modified "2023-09-27" @default.
- W1548051194 title "Random 3-D young diagrams and representation theory" @default.
- W1548051194 cites W1521233381 @default.
- W1548051194 cites W1531525694 @default.
- W1548051194 cites W1534043326 @default.
- W1548051194 cites W1545223503 @default.
- W1548051194 cites W1552186532 @default.
- W1548051194 cites W1587514819 @default.
- W1548051194 cites W1592958377 @default.
- W1548051194 cites W1624880083 @default.
- W1548051194 cites W1647888871 @default.
- W1548051194 cites W1654411218 @default.
- W1548051194 cites W1669933784 @default.
- W1548051194 cites W171585182 @default.
- W1548051194 cites W178729924 @default.
- W1548051194 cites W1942616285 @default.
- W1548051194 cites W1987767063 @default.
- W1548051194 cites W1987909429 @default.
- W1548051194 cites W1991556567 @default.
- W1548051194 cites W1991557163 @default.
- W1548051194 cites W1991885341 @default.
- W1548051194 cites W1997050868 @default.
- W1548051194 cites W2002323406 @default.
- W1548051194 cites W2003103297 @default.
- W1548051194 cites W2005458078 @default.
- W1548051194 cites W2010602051 @default.
- W1548051194 cites W2021041655 @default.
- W1548051194 cites W2030407005 @default.
- W1548051194 cites W2030714979 @default.
- W1548051194 cites W2032051450 @default.
- W1548051194 cites W2032707328 @default.
- W1548051194 cites W2044427968 @default.
- W1548051194 cites W2045064458 @default.
- W1548051194 cites W2053281886 @default.
- W1548051194 cites W2063822466 @default.
- W1548051194 cites W2069418939 @default.
- W1548051194 cites W2088038547 @default.
- W1548051194 cites W2090755539 @default.
- W1548051194 cites W2100038628 @default.
- W1548051194 cites W2100856114 @default.
- W1548051194 cites W2106488453 @default.
- W1548051194 cites W2123323113 @default.
- W1548051194 cites W2132835242 @default.
- W1548051194 cites W2133997199 @default.
- W1548051194 cites W2135025148 @default.
- W1548051194 cites W2145225240 @default.
- W1548051194 cites W2150308869 @default.
- W1548051194 cites W2152646636 @default.
- W1548051194 cites W2154812378 @default.
- W1548051194 cites W2165085763 @default.
- W1548051194 cites W2165969877 @default.
- W1548051194 cites W2328243959 @default.
- W1548051194 cites W263845233 @default.
- W1548051194 cites W2791337017 @default.
- W1548051194 cites W2914659449 @default.
- W1548051194 cites W2953250656 @default.
- W1548051194 cites W2963009113 @default.
- W1548051194 cites W2963415950 @default.
- W1548051194 cites W2964293720 @default.
- W1548051194 cites W3021709410 @default.
- W1548051194 cites W3098718096 @default.
- W1548051194 cites W3106198290 @default.
- W1548051194 cites W3215816548 @default.
- W1548051194 hasPublicationYear "2011" @default.
- W1548051194 type Work @default.
- W1548051194 sameAs 1548051194 @default.
- W1548051194 citedByCount "0" @default.
- W1548051194 crossrefType "dissertation" @default.
- W1548051194 hasAuthorship W1548051194A5005808127 @default.
- W1548051194 hasConcept C105795698 @default.
- W1548051194 hasConcept C114614502 @default.
- W1548051194 hasConcept C118615104 @default.
- W1548051194 hasConcept C121332964 @default.
- W1548051194 hasConcept C121864883 @default.
- W1548051194 hasConcept C130402806 @default.
- W1548051194 hasConcept C134306372 @default.
- W1548051194 hasConcept C165368118 @default.
- W1548051194 hasConcept C177148314 @default.
- W1548051194 hasConcept C17744445 @default.
- W1548051194 hasConcept C178790620 @default.
- W1548051194 hasConcept C185592680 @default.
- W1548051194 hasConcept C197273675 @default.
- W1548051194 hasConcept C199539241 @default.
- W1548051194 hasConcept C202444582 @default.
- W1548051194 hasConcept C21031990 @default.
- W1548051194 hasConcept C24424167 @default.
- W1548051194 hasConcept C2781311116 @default.
- W1548051194 hasConcept C33923547 @default.
- W1548051194 hasConcept C52386014 @default.
- W1548051194 hasConcept C67820243 @default.
- W1548051194 hasConcept C98763669 @default.
- W1548051194 hasConcept C99072794 @default.
- W1548051194 hasConcept C99874945 @default.
- W1548051194 hasConceptScore W1548051194C105795698 @default.
- W1548051194 hasConceptScore W1548051194C114614502 @default.
- W1548051194 hasConceptScore W1548051194C118615104 @default.