Matches in SemOpenAlex for { <https://semopenalex.org/work/W1548384575> ?p ?o ?g. }
- W1548384575 abstract "Solving optimal stopping problems driven by Levy processes has been a challenging task and has found many applications in modern theory of mathematical finance. For example situations in which optimal stopping typically arise include the problem of finding the arbitrage-free price of the American put (call) option and determining an optimal bankruptcy level in the problem of endogenous bankruptcy. The main concern in pricing the American put (call) option lies in finding the critical value of the stock price process below (above) which the option is exercised. In the case of endogenous bankruptcy, the problem mainly deals with finding an optimal bankruptcy level of a firm which keeps a constant profile of debt and chooses its bankruptcy level endogenously, to maximize the equity value. In the context of the theory of optimal stopping, the arbitrage-free price of the American put (call) option and the equity value of the defaultable firm correspond to the value function of an optimal stopping problem while the critical value of the stock price process and the bankruptcy level correspond to the optimal stopping boundary. In general, optimal stopping problems are two-dimensional in the sense that they consist of finding the value function and the stopping boundary simultaneously; that is to say that the value function can be seen as a function of an unknown stopping boundary. Thus, from an analytical point of view, solving the problem is difficult. A major technique that has been widely used in the theory of optimal stopping problems driven by diffusion processes is the free boundary formulation for the value function and the boundary. The free boundary formulation consists primarily of a partial differential equation and (among other boundary conditions) the continuous and smooth pasting conditions used to determine the unknown boundary and specify the value function. The first condition requires the value function to be continuous at the boundary while the second condition imposes a C1 smoothness of the value function at the boundary. Depending on the nature of the problem and the sample paths of the Levy process, the smooth pasting condition may break down. As will be shown in this thesis, this phenomenon can happen to be the case when the Levy process has paths of bounded variation. As a result, for this type of Levy process, the continuous pasting condition appears to be the only criterion for choosing the boundary. Thus, a better understanding of the appropriate choice of pasting conditions can play an important role in the theory. Much of this thesis is concerned with solving optimal stopping problems driven by Levy processes in a general setting. The aim is to expose a framework by which explicit solutions can be obtained. Using such solutions, we give sufficient and necessary conditions for the continuous and smooth pasting conditions to occur in the considered problem. In this thesis we give examples of different cases. Most of the main results presented in this thesis are illustrated by means of numerical examples for Levy processes having one-sided jumps." @default.
- W1548384575 created "2016-06-24" @default.
- W1548384575 creator A5082759935 @default.
- W1548384575 date "2007-01-15" @default.
- W1548384575 modified "2023-09-26" @default.
- W1548384575 title "Optimal Stopping Problems Driven by Lévy Processes and Pasting Principles" @default.
- W1548384575 cites W145207364 @default.
- W1548384575 cites W1486425854 @default.
- W1548384575 cites W1498143389 @default.
- W1548384575 cites W1503295912 @default.
- W1548384575 cites W1509145633 @default.
- W1548384575 cites W1528471277 @default.
- W1548384575 cites W1532154335 @default.
- W1548384575 cites W1545370368 @default.
- W1548384575 cites W1558542711 @default.
- W1548384575 cites W1591798773 @default.
- W1548384575 cites W1594563152 @default.
- W1548384575 cites W160746084 @default.
- W1548384575 cites W1969427057 @default.
- W1548384575 cites W1975527087 @default.
- W1548384575 cites W1975760144 @default.
- W1548384575 cites W1980519218 @default.
- W1548384575 cites W1983299089 @default.
- W1548384575 cites W1985384623 @default.
- W1548384575 cites W1995522593 @default.
- W1548384575 cites W1996533630 @default.
- W1548384575 cites W1999486100 @default.
- W1548384575 cites W2001029673 @default.
- W1548384575 cites W2011974110 @default.
- W1548384575 cites W2012087674 @default.
- W1548384575 cites W2016247795 @default.
- W1548384575 cites W2016716371 @default.
- W1548384575 cites W2016758953 @default.
- W1548384575 cites W2018881312 @default.
- W1548384575 cites W2023142000 @default.
- W1548384575 cites W2034554861 @default.
- W1548384575 cites W2039175517 @default.
- W1548384575 cites W2041099338 @default.
- W1548384575 cites W2041550349 @default.
- W1548384575 cites W2049098836 @default.
- W1548384575 cites W2055737060 @default.
- W1548384575 cites W2063996763 @default.
- W1548384575 cites W2067286730 @default.
- W1548384575 cites W2070190162 @default.
- W1548384575 cites W2077529419 @default.
- W1548384575 cites W2077791698 @default.
- W1548384575 cites W2079068657 @default.
- W1548384575 cites W2079491906 @default.
- W1548384575 cites W2079934112 @default.
- W1548384575 cites W2081944774 @default.
- W1548384575 cites W2082613418 @default.
- W1548384575 cites W2082707462 @default.
- W1548384575 cites W2089868416 @default.
- W1548384575 cites W2090789457 @default.
- W1548384575 cites W2091303169 @default.
- W1548384575 cites W2100190417 @default.
- W1548384575 cites W2102791351 @default.
- W1548384575 cites W2103759071 @default.
- W1548384575 cites W2104723218 @default.
- W1548384575 cites W2108593249 @default.
- W1548384575 cites W2109410136 @default.
- W1548384575 cites W2115527256 @default.
- W1548384575 cites W2115932243 @default.
- W1548384575 cites W2118891973 @default.
- W1548384575 cites W2120005636 @default.
- W1548384575 cites W2128963101 @default.
- W1548384575 cites W2134864040 @default.
- W1548384575 cites W2137313071 @default.
- W1548384575 cites W2138540172 @default.
- W1548384575 cites W2140460002 @default.
- W1548384575 cites W2147994618 @default.
- W1548384575 cites W2148688139 @default.
- W1548384575 cites W2150945633 @default.
- W1548384575 cites W2151078973 @default.
- W1548384575 cites W2154158675 @default.
- W1548384575 cites W2155151872 @default.
- W1548384575 cites W2165486746 @default.
- W1548384575 cites W2169442762 @default.
- W1548384575 cites W2312186590 @default.
- W1548384575 cites W2322027392 @default.
- W1548384575 cites W2334457686 @default.
- W1548384575 cites W2468801668 @default.
- W1548384575 cites W2482762127 @default.
- W1548384575 cites W2499983142 @default.
- W1548384575 cites W2797403601 @default.
- W1548384575 cites W2797641211 @default.
- W1548384575 cites W2799137445 @default.
- W1548384575 cites W3124827703 @default.
- W1548384575 cites W3136506851 @default.
- W1548384575 cites W379377699 @default.
- W1548384575 cites W65928136 @default.
- W1548384575 cites W2463126551 @default.
- W1548384575 hasPublicationYear "2007" @default.
- W1548384575 type Work @default.
- W1548384575 sameAs 1548384575 @default.
- W1548384575 citedByCount "3" @default.
- W1548384575 countsByYear W15483845752012 @default.
- W1548384575 countsByYear W15483845752017 @default.
- W1548384575 crossrefType "dissertation" @default.
- W1548384575 hasAuthorship W1548384575A5082759935 @default.