Matches in SemOpenAlex for { <https://semopenalex.org/work/W1548877993> ?p ?o ?g. }
- W1548877993 abstract "Author(s): Rogers, Christopher Lee | Advisor(s): Baez, John C | Abstract: In higher symplectic geometry, we consider generalizations of symplectic manifolds called n-plectic manifolds. We say a manifold is n-plectic if it is equipped with a closed, non-degenerate form of degree (n+1). We show that certain higher algebraic and geometric structures naturally arise on these manifolds. These structures can be understood as the categorified or homotopy analogues of important structures studied in symplectic geometry and geometric quantization. Our results imply that higher symplectic geometry is closely related to several areas of current interest including string theory, loop groups, and generalized geometry.We begin by showing that, just as a symplectic manifold gives a Poisson algebra of functions, any n-plectic manifold gives a Lie n-algebra containing certain differential forms which we call Hamiltonian. Lie n-algebras are examples of strongly homotopy Lie algebras. They consist of an n-term chain complex equipped with a collection of skew-symmetric multi-brackets that satisfy a generalized Jacobi identity.We then develop the machinery necessary to geometrically quantize n-plectic manifolds. In particular, just as a prequantized symplectic manifold is equipped with a principal U(1)-bundle with connection, we show that a prequantized 2-plectic manifold is equipped with a U(1)-gerbe with 2-connection. A gerbe is a categorified sheaf, or stack, which generalizes the notion of a principal bundle. Furthermore, over any 2-plectic manifold there is a vector bundle equipped with extra structure called a Courant algebroid. This bundle is the 2-plectic analogue of the Atiyah algebroid over a prequantized symplectic manifold. Its space of global sections also forms a Lie 2-algebra. We use this Lie 2-algebra to prequantize the Lie 2-algebra of Hamiltonian forms.Finally, we introduce the 2-plectic analogue of the Bohr-Sommerfeld variety associated to a real polarization, and use this to geometrically quantize 2-plectic manifolds. For symplectic manifolds, the output from quantization is a Hilbert space of quantum states. Similarly, quantizing a 2-plectic manifold gives a category of quantum states. We consider a particular example in which the objects of this category can be identified with representations of the Lie group SU(2)." @default.
- W1548877993 created "2016-06-24" @default.
- W1548877993 creator A5004715201 @default.
- W1548877993 date "2011-01-01" @default.
- W1548877993 modified "2023-09-27" @default.
- W1548877993 title "Higher Symplectic Geometry" @default.
- W1548877993 cites W136099788 @default.
- W1548877993 cites W1490198998 @default.
- W1548877993 cites W1507310182 @default.
- W1548877993 cites W1515192744 @default.
- W1548877993 cites W1537633483 @default.
- W1548877993 cites W1538654631 @default.
- W1548877993 cites W1538658958 @default.
- W1548877993 cites W1562626475 @default.
- W1548877993 cites W1562897850 @default.
- W1548877993 cites W1834571870 @default.
- W1548877993 cites W1842315605 @default.
- W1548877993 cites W1845300925 @default.
- W1548877993 cites W1903020562 @default.
- W1548877993 cites W19439196 @default.
- W1548877993 cites W1966121613 @default.
- W1548877993 cites W1967571326 @default.
- W1548877993 cites W1972098605 @default.
- W1548877993 cites W2022976991 @default.
- W1548877993 cites W2027698801 @default.
- W1548877993 cites W2045845378 @default.
- W1548877993 cites W2055484081 @default.
- W1548877993 cites W2079772887 @default.
- W1548877993 cites W2106519379 @default.
- W1548877993 cites W2111624622 @default.
- W1548877993 cites W2142164711 @default.
- W1548877993 cites W2142592593 @default.
- W1548877993 cites W2146755024 @default.
- W1548877993 cites W2162112622 @default.
- W1548877993 cites W2162466949 @default.
- W1548877993 cites W2168031020 @default.
- W1548877993 cites W2316265374 @default.
- W1548877993 cites W2574058418 @default.
- W1548877993 cites W2949728479 @default.
- W1548877993 cites W2950191227 @default.
- W1548877993 cites W2950316175 @default.
- W1548877993 cites W2951543747 @default.
- W1548877993 cites W2951708771 @default.
- W1548877993 cites W2962925770 @default.
- W1548877993 cites W3037272756 @default.
- W1548877993 cites W3037272886 @default.
- W1548877993 cites W3100944092 @default.
- W1548877993 cites W3124994728 @default.
- W1548877993 cites W3133809144 @default.
- W1548877993 cites W589815244 @default.
- W1548877993 cites W2949652285 @default.
- W1548877993 hasPublicationYear "2011" @default.
- W1548877993 type Work @default.
- W1548877993 sameAs 1548877993 @default.
- W1548877993 citedByCount "22" @default.
- W1548877993 countsByYear W15488779932012 @default.
- W1548877993 countsByYear W15488779932013 @default.
- W1548877993 countsByYear W15488779932014 @default.
- W1548877993 countsByYear W15488779932015 @default.
- W1548877993 countsByYear W15488779932016 @default.
- W1548877993 countsByYear W15488779932017 @default.
- W1548877993 countsByYear W15488779932018 @default.
- W1548877993 countsByYear W15488779932021 @default.
- W1548877993 crossrefType "posted-content" @default.
- W1548877993 hasAuthorship W1548877993A5004715201 @default.
- W1548877993 hasConcept C104586451 @default.
- W1548877993 hasConcept C130190758 @default.
- W1548877993 hasConcept C13355873 @default.
- W1548877993 hasConcept C135661100 @default.
- W1548877993 hasConcept C136119220 @default.
- W1548877993 hasConcept C168619227 @default.
- W1548877993 hasConcept C175322374 @default.
- W1548877993 hasConcept C202444582 @default.
- W1548877993 hasConcept C2524010 @default.
- W1548877993 hasConcept C33923547 @default.
- W1548877993 hasConcept C40265840 @default.
- W1548877993 hasConcept C56907000 @default.
- W1548877993 hasConcept C95857938 @default.
- W1548877993 hasConceptScore W1548877993C104586451 @default.
- W1548877993 hasConceptScore W1548877993C130190758 @default.
- W1548877993 hasConceptScore W1548877993C13355873 @default.
- W1548877993 hasConceptScore W1548877993C135661100 @default.
- W1548877993 hasConceptScore W1548877993C136119220 @default.
- W1548877993 hasConceptScore W1548877993C168619227 @default.
- W1548877993 hasConceptScore W1548877993C175322374 @default.
- W1548877993 hasConceptScore W1548877993C202444582 @default.
- W1548877993 hasConceptScore W1548877993C2524010 @default.
- W1548877993 hasConceptScore W1548877993C33923547 @default.
- W1548877993 hasConceptScore W1548877993C40265840 @default.
- W1548877993 hasConceptScore W1548877993C56907000 @default.
- W1548877993 hasConceptScore W1548877993C95857938 @default.
- W1548877993 hasLocation W15488779931 @default.
- W1548877993 hasOpenAccess W1548877993 @default.
- W1548877993 hasPrimaryLocation W15488779931 @default.
- W1548877993 hasRelatedWork W1533197492 @default.
- W1548877993 hasRelatedWork W1578848569 @default.
- W1548877993 hasRelatedWork W1671560706 @default.
- W1548877993 hasRelatedWork W1680171265 @default.
- W1548877993 hasRelatedWork W1910489004 @default.
- W1548877993 hasRelatedWork W1967571326 @default.