Matches in SemOpenAlex for { <https://semopenalex.org/work/W1550149052> ?p ?o ?g. }
- W1550149052 abstract "In this chapter experience with solving quadratic assignment problems is reported. The results reported in this chapter are the best results for heuristic solutions of the quadratic assignment problem available to date and can serve as bench mark results for future researchers who propose new approaches for solving quadratic assignment problems. The most effective method to date for solving quadratic assignment problems heuristically is the hybrid genetic algorithm. The offspring produced by the genetic algorithms are improved by tabu search before considering them for inclusion into the population. Six different tabu searches are described and are embedded in a special genetic algorithm whose merging process is the most effective for heuristically solving quadratic assignment problems. The most successful merging process (the crossover operator) used in the genetic algorithm is described. This specific merging process exploits the special structure of quadratic assignment problems and is especially effective when the distance matrix consists of “real” distances rather than random values. A short cut suggested by Taillard (1995) is described. This short cut reduces the time required for the evaluation of all O(n2) values of the objective function by all pair-wise exchanges of facilities from O(n4) to O(n2) (i.e. O(1) per pair exchange) where n is the number of facilities. Grey pattern problems are quadratic assignment problems with a special structure. For these problems a special merging process and a special tabu search are developed (Drezner, 2006). Several improvement schemes for genetic algorithms (or hybrid genetic algorithms) are described and discussed. These include: gender specific genetic algorithms, distance based approach to selecting parents in genetic algorithms, a distance based rule for removing population members, and compounded genetic algorithms. These improvement schemes can help researchers who work on other problems as well to improve the performance of their genetic or hybrid genetic algorithms. The chapter concludes with summary tables of computational experiments with various techniques. These include the best known results for 32 “pure” quadratic assignment problems and 127 grey pattern quadratic assignment problems. All pure quadratic assignment problems have between 36 and 150 facilities. Smaller problems, with a few" @default.
- W1550149052 created "2016-06-24" @default.
- W1550149052 creator A5056737913 @default.
- W1550149052 date "2008-09-01" @default.
- W1550149052 modified "2023-10-01" @default.
- W1550149052 title "Tabu Search and Hybrid Genetic Algorithms for Quadratic Assignment Problems" @default.
- W1550149052 cites W127260919 @default.
- W1550149052 cites W1497256448 @default.
- W1550149052 cites W1563291122 @default.
- W1550149052 cites W1572942168 @default.
- W1550149052 cites W1582949132 @default.
- W1550149052 cites W1966213445 @default.
- W1550149052 cites W1968437372 @default.
- W1550149052 cites W1971700807 @default.
- W1550149052 cites W1975389169 @default.
- W1550149052 cites W1976741677 @default.
- W1550149052 cites W1979142433 @default.
- W1550149052 cites W1984297012 @default.
- W1550149052 cites W1985109028 @default.
- W1550149052 cites W1985880808 @default.
- W1550149052 cites W1989353689 @default.
- W1550149052 cites W1989938457 @default.
- W1550149052 cites W2002472628 @default.
- W1550149052 cites W2004229681 @default.
- W1550149052 cites W2008780819 @default.
- W1550149052 cites W2010334716 @default.
- W1550149052 cites W2015206516 @default.
- W1550149052 cites W2015699495 @default.
- W1550149052 cites W2016688797 @default.
- W1550149052 cites W2017377855 @default.
- W1550149052 cites W2020696014 @default.
- W1550149052 cites W2025468705 @default.
- W1550149052 cites W2048698391 @default.
- W1550149052 cites W2051391874 @default.
- W1550149052 cites W2063790063 @default.
- W1550149052 cites W2066883591 @default.
- W1550149052 cites W2069657950 @default.
- W1550149052 cites W2070223281 @default.
- W1550149052 cites W2084792706 @default.
- W1550149052 cites W2093204172 @default.
- W1550149052 cites W2093475907 @default.
- W1550149052 cites W2102092838 @default.
- W1550149052 cites W2121035504 @default.
- W1550149052 cites W2123478933 @default.
- W1550149052 cites W2124841523 @default.
- W1550149052 cites W2127334628 @default.
- W1550149052 cites W2134954564 @default.
- W1550149052 cites W2152150600 @default.
- W1550149052 cites W2159505773 @default.
- W1550149052 cites W2170832344 @default.
- W1550149052 cites W2329434787 @default.
- W1550149052 cites W2339500526 @default.
- W1550149052 cites W2399994135 @default.
- W1550149052 cites W2403173049 @default.
- W1550149052 cites W2504454921 @default.
- W1550149052 cites W2904250082 @default.
- W1550149052 cites W2984779794 @default.
- W1550149052 cites W3023540311 @default.
- W1550149052 cites W50270175 @default.
- W1550149052 doi "https://doi.org/10.5772/5595" @default.
- W1550149052 hasPublicationYear "2008" @default.
- W1550149052 type Work @default.
- W1550149052 sameAs 1550149052 @default.
- W1550149052 citedByCount "6" @default.
- W1550149052 countsByYear W15501490522013 @default.
- W1550149052 countsByYear W15501490522015 @default.
- W1550149052 countsByYear W15501490522018 @default.
- W1550149052 countsByYear W15501490522019 @default.
- W1550149052 countsByYear W15501490522020 @default.
- W1550149052 crossrefType "book-chapter" @default.
- W1550149052 hasAuthorship W1550149052A5056737913 @default.
- W1550149052 hasBestOaLocation W15501490521 @default.
- W1550149052 hasConcept C11413529 @default.
- W1550149052 hasConcept C123370116 @default.
- W1550149052 hasConcept C126255220 @default.
- W1550149052 hasConcept C129844170 @default.
- W1550149052 hasConcept C2524010 @default.
- W1550149052 hasConcept C33923547 @default.
- W1550149052 hasConcept C41008148 @default.
- W1550149052 hasConcept C8880873 @default.
- W1550149052 hasConcept C90189156 @default.
- W1550149052 hasConceptScore W1550149052C11413529 @default.
- W1550149052 hasConceptScore W1550149052C123370116 @default.
- W1550149052 hasConceptScore W1550149052C126255220 @default.
- W1550149052 hasConceptScore W1550149052C129844170 @default.
- W1550149052 hasConceptScore W1550149052C2524010 @default.
- W1550149052 hasConceptScore W1550149052C33923547 @default.
- W1550149052 hasConceptScore W1550149052C41008148 @default.
- W1550149052 hasConceptScore W1550149052C8880873 @default.
- W1550149052 hasConceptScore W1550149052C90189156 @default.
- W1550149052 hasLocation W15501490521 @default.
- W1550149052 hasLocation W15501490522 @default.
- W1550149052 hasOpenAccess W1550149052 @default.
- W1550149052 hasPrimaryLocation W15501490521 @default.
- W1550149052 hasRelatedWork W1559717033 @default.
- W1550149052 hasRelatedWork W167854338 @default.
- W1550149052 hasRelatedWork W2061323558 @default.
- W1550149052 hasRelatedWork W2094560256 @default.
- W1550149052 hasRelatedWork W2139271550 @default.
- W1550149052 hasRelatedWork W2150158501 @default.