Matches in SemOpenAlex for { <https://semopenalex.org/work/W1550916401> ?p ?o ?g. }
- W1550916401 endingPage "53" @default.
- W1550916401 startingPage "35" @default.
- W1550916401 abstract "There is heightened interest in using next-generation sequencing technologies to identify rare variants that influence complex human diseases and traits. Meta-analysis is essential to this endeavor because large sample sizes are required for detecting associations with rare variants. In this article, we provide a comprehensive overview of statistical methods for meta-analysis of sequencing studies for discovering rare-variant associations. Specifically, we discuss the calculation of relevant summary statistics from participating studies, the construction of gene-level association tests, the choice of transformation for quantitative traits, the use of fixed-effects versus random-effects models, and the removal of shadow association signals through conditional analysis. We also show that meta-analysis based on properly calculated summary statistics is as powerful as joint analysis of individual-participant data. In addition, we demonstrate the performance of different meta-analysis methods by using both simulated and empirical data. We then compare four major software packages for meta-analysis of rare-variant associations—MASS, RAREMETAL, MetaSKAT, and seqMeta—in terms of the underlying statistical methodology, analysis pipeline, and software interface. Finally, we present PreMeta, a software interface that integrates the four meta-analysis packages and allows a consortium to combine otherwise incompatible summary statistics. There is heightened interest in using next-generation sequencing technologies to identify rare variants that influence complex human diseases and traits. Meta-analysis is essential to this endeavor because large sample sizes are required for detecting associations with rare variants. In this article, we provide a comprehensive overview of statistical methods for meta-analysis of sequencing studies for discovering rare-variant associations. Specifically, we discuss the calculation of relevant summary statistics from participating studies, the construction of gene-level association tests, the choice of transformation for quantitative traits, the use of fixed-effects versus random-effects models, and the removal of shadow association signals through conditional analysis. We also show that meta-analysis based on properly calculated summary statistics is as powerful as joint analysis of individual-participant data. In addition, we demonstrate the performance of different meta-analysis methods by using both simulated and empirical data. We then compare four major software packages for meta-analysis of rare-variant associations—MASS, RAREMETAL, MetaSKAT, and seqMeta—in terms of the underlying statistical methodology, analysis pipeline, and software interface. Finally, we present PreMeta, a software interface that integrates the four meta-analysis packages and allows a consortium to combine otherwise incompatible summary statistics." @default.
- W1550916401 created "2016-06-24" @default.
- W1550916401 creator A5017049788 @default.
- W1550916401 creator A5065262945 @default.
- W1550916401 date "2015-07-01" @default.
- W1550916401 modified "2023-09-27" @default.
- W1550916401 title "Meta-analysis for Discovering Rare-Variant Associations: Statistical Methods and Software Programs" @default.
- W1550916401 cites W1968886567 @default.
- W1550916401 cites W1971102564 @default.
- W1550916401 cites W1987754412 @default.
- W1550916401 cites W1990430353 @default.
- W1550916401 cites W2001545837 @default.
- W1550916401 cites W2012610160 @default.
- W1550916401 cites W2017791285 @default.
- W1550916401 cites W2020427316 @default.
- W1550916401 cites W2029387902 @default.
- W1550916401 cites W2033608662 @default.
- W1550916401 cites W2035196541 @default.
- W1550916401 cites W2042421957 @default.
- W1550916401 cites W2045657044 @default.
- W1550916401 cites W2047280692 @default.
- W1550916401 cites W2058148991 @default.
- W1550916401 cites W2059744149 @default.
- W1550916401 cites W2065125274 @default.
- W1550916401 cites W2070984858 @default.
- W1550916401 cites W2105306382 @default.
- W1550916401 cites W2107328434 @default.
- W1550916401 cites W2109252993 @default.
- W1550916401 cites W2113547573 @default.
- W1550916401 cites W2117106243 @default.
- W1550916401 cites W2122060560 @default.
- W1550916401 cites W2122492792 @default.
- W1550916401 cites W2129418664 @default.
- W1550916401 cites W2133517490 @default.
- W1550916401 cites W2139481445 @default.
- W1550916401 cites W2148642390 @default.
- W1550916401 cites W2149992227 @default.
- W1550916401 cites W2152885121 @default.
- W1550916401 cites W2153899794 @default.
- W1550916401 cites W2154761268 @default.
- W1550916401 cites W2159998163 @default.
- W1550916401 cites W2161620018 @default.
- W1550916401 cites W2161644980 @default.
- W1550916401 cites W2163953557 @default.
- W1550916401 cites W4211241626 @default.
- W1550916401 doi "https://doi.org/10.1016/j.ajhg.2015.05.001" @default.
- W1550916401 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4571037" @default.
- W1550916401 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26094574" @default.
- W1550916401 hasPublicationYear "2015" @default.
- W1550916401 type Work @default.
- W1550916401 sameAs 1550916401 @default.
- W1550916401 citedByCount "31" @default.
- W1550916401 countsByYear W15509164012015 @default.
- W1550916401 countsByYear W15509164012016 @default.
- W1550916401 countsByYear W15509164012017 @default.
- W1550916401 countsByYear W15509164012018 @default.
- W1550916401 countsByYear W15509164012019 @default.
- W1550916401 countsByYear W15509164012020 @default.
- W1550916401 countsByYear W15509164012021 @default.
- W1550916401 countsByYear W15509164012022 @default.
- W1550916401 countsByYear W15509164012023 @default.
- W1550916401 crossrefType "journal-article" @default.
- W1550916401 hasAuthorship W1550916401A5017049788 @default.
- W1550916401 hasAuthorship W1550916401A5065262945 @default.
- W1550916401 hasBestOaLocation W15509164011 @default.
- W1550916401 hasConcept C105795698 @default.
- W1550916401 hasConcept C113843644 @default.
- W1550916401 hasConcept C124101348 @default.
- W1550916401 hasConcept C126322002 @default.
- W1550916401 hasConcept C129307140 @default.
- W1550916401 hasConcept C129848803 @default.
- W1550916401 hasConcept C157915830 @default.
- W1550916401 hasConcept C173608175 @default.
- W1550916401 hasConcept C185592680 @default.
- W1550916401 hasConcept C198531522 @default.
- W1550916401 hasConcept C199360897 @default.
- W1550916401 hasConcept C2522767166 @default.
- W1550916401 hasConcept C2777904410 @default.
- W1550916401 hasConcept C33923547 @default.
- W1550916401 hasConcept C41008148 @default.
- W1550916401 hasConcept C43521106 @default.
- W1550916401 hasConcept C43617362 @default.
- W1550916401 hasConcept C71924100 @default.
- W1550916401 hasConcept C95190672 @default.
- W1550916401 hasConcept C96608239 @default.
- W1550916401 hasConceptScore W1550916401C105795698 @default.
- W1550916401 hasConceptScore W1550916401C113843644 @default.
- W1550916401 hasConceptScore W1550916401C124101348 @default.
- W1550916401 hasConceptScore W1550916401C126322002 @default.
- W1550916401 hasConceptScore W1550916401C129307140 @default.
- W1550916401 hasConceptScore W1550916401C129848803 @default.
- W1550916401 hasConceptScore W1550916401C157915830 @default.
- W1550916401 hasConceptScore W1550916401C173608175 @default.
- W1550916401 hasConceptScore W1550916401C185592680 @default.
- W1550916401 hasConceptScore W1550916401C198531522 @default.
- W1550916401 hasConceptScore W1550916401C199360897 @default.
- W1550916401 hasConceptScore W1550916401C2522767166 @default.
- W1550916401 hasConceptScore W1550916401C2777904410 @default.