Matches in SemOpenAlex for { <https://semopenalex.org/work/W1551520306> ?p ?o ?g. }
- W1551520306 abstract "The achievement of sustained nuclear fusion in magnetically confined plasma relies on efficient confinement of alpha particles, which are high-energy ions produced by the fusion reaction. Such particles can excite instabilities in the frequency range of Alfven Eigenmodes (AEs), which significantly degrade their confinement and threatens the vacuum vessel of future reactors. In order to develop diagnostics and control schemes, a better understanding of linear and nonlinear features of resonant interactions between plasma waves and high-energy particles, which is the aim of this thesis, is required. In the case of an isolated single resonance, the description of AE destabilization by high-energy ions is homothetic to the so-called Berk-Breizman (BB) problem, which is an extension of the classic bump-on-tail electrostatic problem, including external damping to a thermal plasma, and collisions. A semi-Lagrangian simulation code, COBBLES, is developed to solve the initial-value BB problem in both perturbative (delta f) and self-consistent (full-f) approaches. Two collision models are considered, namely a Krook model, and a model that includes dynamical friction (drag) and velocity-space diffusion. The nonlinear behavior of instabilities in experimentally-relevant conditions is categorized into steady-state, periodic, chaotic, and frequency-sweeping (chirping) regimes, depending on external damping rate and collision frequency. The chaotic regime is shown to extend into a linearly stable region, and a mechanism that solves the paradox formed by the existence of such subcritical instabilities is proposed. Analytic and semi-empirical laws for nonlinear chirping characteristics, such as sweeping-rate, lifetime, and asymmetry, are developed and validated. Long-time simulations demonstrate the existence of a quasi-periodic chirping regime. Although the existence of such regime stands for both collision models, drag and diffusion are essential to reproduce the alternation between major chirping events and quiescent phases, which is observed in experiments. Based on these findings, a new method for analyzing fundamental kinetic plasma parameters, such as linear drive and external damping rate, is developed. The method, which consists of fitting procedures between COBBLES simulations and quasi-periodic chirping AE experiments, does not require any internal diagnostics. This approach is applied to Toroidicity-induced AEs (TAEs) on JT-60 Upgrade and Mega-Amp Spherical Tokamak devices, which yields estimations of local kinetic parameters and suggests the existence of TAEs relatively far from marginal stability. The results are validated by recovering measured growth and decay of perturbation amplitude, and by estimating collision frequencies from experimental equilibrium data." @default.
- W1551520306 created "2016-06-24" @default.
- W1551520306 creator A5084855832 @default.
- W1551520306 date "2010-12-15" @default.
- W1551520306 modified "2023-09-27" @default.
- W1551520306 title "The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfvén Eigenmodes" @default.
- W1551520306 cites W108488200 @default.
- W1551520306 cites W1273448749 @default.
- W1551520306 cites W1611263765 @default.
- W1551520306 cites W1646593722 @default.
- W1551520306 cites W1849537602 @default.
- W1551520306 cites W1965666165 @default.
- W1551520306 cites W1967850845 @default.
- W1551520306 cites W1969589488 @default.
- W1551520306 cites W1970495346 @default.
- W1551520306 cites W1977636886 @default.
- W1551520306 cites W1979957029 @default.
- W1551520306 cites W1980364863 @default.
- W1551520306 cites W1980442330 @default.
- W1551520306 cites W1981762789 @default.
- W1551520306 cites W1984258707 @default.
- W1551520306 cites W1984912991 @default.
- W1551520306 cites W1985261718 @default.
- W1551520306 cites W1991619658 @default.
- W1551520306 cites W1992200569 @default.
- W1551520306 cites W1993520995 @default.
- W1551520306 cites W1995218914 @default.
- W1551520306 cites W1998108844 @default.
- W1551520306 cites W2003856226 @default.
- W1551520306 cites W2006882725 @default.
- W1551520306 cites W2010090574 @default.
- W1551520306 cites W2010917350 @default.
- W1551520306 cites W2011000523 @default.
- W1551520306 cites W2019213457 @default.
- W1551520306 cites W2021613826 @default.
- W1551520306 cites W2023559414 @default.
- W1551520306 cites W2027078198 @default.
- W1551520306 cites W2028132868 @default.
- W1551520306 cites W2032062916 @default.
- W1551520306 cites W2032772647 @default.
- W1551520306 cites W2033088711 @default.
- W1551520306 cites W2033582812 @default.
- W1551520306 cites W2034857587 @default.
- W1551520306 cites W2036721330 @default.
- W1551520306 cites W2042142795 @default.
- W1551520306 cites W2043973664 @default.
- W1551520306 cites W2046488012 @default.
- W1551520306 cites W2051702038 @default.
- W1551520306 cites W2053289371 @default.
- W1551520306 cites W2057331422 @default.
- W1551520306 cites W2060656390 @default.
- W1551520306 cites W2062393890 @default.
- W1551520306 cites W2066060292 @default.
- W1551520306 cites W2068330774 @default.
- W1551520306 cites W2072595914 @default.
- W1551520306 cites W2074121559 @default.
- W1551520306 cites W2074552355 @default.
- W1551520306 cites W2075145267 @default.
- W1551520306 cites W2080132394 @default.
- W1551520306 cites W2084252619 @default.
- W1551520306 cites W2084524028 @default.
- W1551520306 cites W2084982336 @default.
- W1551520306 cites W2086318762 @default.
- W1551520306 cites W2086617698 @default.
- W1551520306 cites W2087684931 @default.
- W1551520306 cites W2090120275 @default.
- W1551520306 cites W2092937469 @default.
- W1551520306 cites W2093156962 @default.
- W1551520306 cites W2094307750 @default.
- W1551520306 cites W2097269946 @default.
- W1551520306 cites W2102889822 @default.
- W1551520306 cites W2112205617 @default.
- W1551520306 cites W2138162666 @default.
- W1551520306 cites W2145993241 @default.
- W1551520306 cites W2162359164 @default.
- W1551520306 cites W2167657634 @default.
- W1551520306 cites W2169181183 @default.
- W1551520306 cites W2261437715 @default.
- W1551520306 cites W2265811736 @default.
- W1551520306 cites W2276765591 @default.
- W1551520306 cites W2284022062 @default.
- W1551520306 cites W2535865167 @default.
- W1551520306 cites W2564599527 @default.
- W1551520306 cites W2579149124 @default.
- W1551520306 cites W3003155338 @default.
- W1551520306 cites W3092571626 @default.
- W1551520306 hasPublicationYear "2010" @default.
- W1551520306 type Work @default.
- W1551520306 sameAs 1551520306 @default.
- W1551520306 citedByCount "0" @default.
- W1551520306 crossrefType "journal-article" @default.
- W1551520306 hasAuthorship W1551520306A5084855832 @default.
- W1551520306 hasConcept C112951337 @default.
- W1551520306 hasConcept C121332964 @default.
- W1551520306 hasConcept C139210041 @default.
- W1551520306 hasConcept C154945302 @default.
- W1551520306 hasConcept C158622935 @default.
- W1551520306 hasConcept C159985019 @default.
- W1551520306 hasConcept C184779094 @default.
- W1551520306 hasConcept C192562407 @default.