Matches in SemOpenAlex for { <https://semopenalex.org/work/W155194865> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W155194865 abstract "In most probabilistic risk assessments, there is a set of accident scenarios that involves the physical responses of a system to environmental challenges. Examples include the effects of earthquakes and fires on the operability of a nuclear reactor safety system, the effects of fires and impacts on the safety integrity of a nuclear weapon, and the effects of human intrusions on the transport of radionuclides from an underground waste facility. The physical responses of the system to these challenges can be quite complex, and their evaluation may require the use of detailed computer codes that are very time consuming to execute. Yet, to perform meaningful probabilistic analyses, it is necessary to evaluate the responses for a large number of variations in the input parameters that describe the initial state of the system, the environments to which it is exposed, and the effects of human interaction. Because the uncertainties of the system response may be very large, it may also be necessary to perform these evaluations for various values of modeling parameters that have high uncertainties, such as material stiffnesses, surface emissivities, and ground permeabilities. The authors have been exploring the use of artificial neural networks (ANNs) as a means for estimating the physical responses of complex systems to phenomenological events such as those cited above. These networks are designed as mathematical constructs with adjustable parameters that can be trained so that the results obtained from the networks will simulate the results obtained from the detailed computer codes. The intent is for the networks to provide an adequate simulation of the detailed codes over a significant range of variables while requiring only a small fraction of the computer processing time required by the detailed codes. This enables the authors to integrate the physical response analyses into the probabilistic models in order to estimate the probabilities of various responses." @default.
- W155194865 created "2016-06-24" @default.
- W155194865 creator A5062929365 @default.
- W155194865 creator A5078881462 @default.
- W155194865 creator A5087104988 @default.
- W155194865 date "1998-04-01" @default.
- W155194865 modified "2023-09-28" @default.
- W155194865 title "Dynamic modeling of physical phenomena for PRAs using neural networks" @default.
- W155194865 cites W21199163 @default.
- W155194865 cites W2171277043 @default.
- W155194865 hasPublicationYear "1998" @default.
- W155194865 type Work @default.
- W155194865 sameAs 155194865 @default.
- W155194865 citedByCount "1" @default.
- W155194865 crossrefType "journal-article" @default.
- W155194865 hasAuthorship W155194865A5062929365 @default.
- W155194865 hasAuthorship W155194865A5078881462 @default.
- W155194865 hasAuthorship W155194865A5087104988 @default.
- W155194865 hasConcept C116672817 @default.
- W155194865 hasConcept C121332964 @default.
- W155194865 hasConcept C126231374 @default.
- W155194865 hasConcept C127413603 @default.
- W155194865 hasConcept C154945302 @default.
- W155194865 hasConcept C177264268 @default.
- W155194865 hasConcept C199360897 @default.
- W155194865 hasConcept C200601418 @default.
- W155194865 hasConcept C41008148 @default.
- W155194865 hasConcept C49937458 @default.
- W155194865 hasConcept C50644808 @default.
- W155194865 hasConcept C62520636 @default.
- W155194865 hasConcept C73722673 @default.
- W155194865 hasConceptScore W155194865C116672817 @default.
- W155194865 hasConceptScore W155194865C121332964 @default.
- W155194865 hasConceptScore W155194865C126231374 @default.
- W155194865 hasConceptScore W155194865C127413603 @default.
- W155194865 hasConceptScore W155194865C154945302 @default.
- W155194865 hasConceptScore W155194865C177264268 @default.
- W155194865 hasConceptScore W155194865C199360897 @default.
- W155194865 hasConceptScore W155194865C200601418 @default.
- W155194865 hasConceptScore W155194865C41008148 @default.
- W155194865 hasConceptScore W155194865C49937458 @default.
- W155194865 hasConceptScore W155194865C50644808 @default.
- W155194865 hasConceptScore W155194865C62520636 @default.
- W155194865 hasConceptScore W155194865C73722673 @default.
- W155194865 hasLocation W1551948651 @default.
- W155194865 hasOpenAccess W155194865 @default.
- W155194865 hasPrimaryLocation W1551948651 @default.
- W155194865 hasRelatedWork W1546963572 @default.
- W155194865 hasRelatedWork W1971267154 @default.
- W155194865 hasRelatedWork W2001770383 @default.
- W155194865 hasRelatedWork W200535609 @default.
- W155194865 hasRelatedWork W2013246435 @default.
- W155194865 hasRelatedWork W2016123557 @default.
- W155194865 hasRelatedWork W2028402388 @default.
- W155194865 hasRelatedWork W2036657879 @default.
- W155194865 hasRelatedWork W2041639896 @default.
- W155194865 hasRelatedWork W2057725421 @default.
- W155194865 hasRelatedWork W2062671992 @default.
- W155194865 hasRelatedWork W2062781711 @default.
- W155194865 hasRelatedWork W2102012713 @default.
- W155194865 hasRelatedWork W2121671095 @default.
- W155194865 hasRelatedWork W2337241717 @default.
- W155194865 hasRelatedWork W2746226818 @default.
- W155194865 hasRelatedWork W2760459014 @default.
- W155194865 hasRelatedWork W2988037265 @default.
- W155194865 hasRelatedWork W3194834609 @default.
- W155194865 hasRelatedWork W1591969766 @default.
- W155194865 isParatext "false" @default.
- W155194865 isRetracted "false" @default.
- W155194865 magId "155194865" @default.
- W155194865 workType "article" @default.