Matches in SemOpenAlex for { <https://semopenalex.org/work/W1552014241> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1552014241 endingPage "133" @default.
- W1552014241 startingPage "101" @default.
- W1552014241 abstract "The probability that an embedding of a graph in Z 3 is knotted is investigated. For any given graph (embeddable in Z 3) without cut edges, it is shown that this probability approaches 1 at an exponential rate as the number of edges in the embedding goes to infinity. Furthermore, at least for a subset of these graphs, the rate at which the probability approaches 1 does not depend on the particular graph being embedded. Results analogous to these are proved to be true for embeddings of graphs in a subset of Z 3 bounded by two parallel planes (a slab). In order to investigate the knotting probability of embeddings of graphs in a rectangular prism (an infinitely long rectangular tube in Z 3), a pattern theorem for self-avoiding polygons in a prism is proved. From this it is possible to prove that for any given eulerian graph, the probability that an embedding of the graph in a prism is knotted goes to 1 as the number of edges in the embedding goes to infinity. Then, just as for Z 3, there is at least a subset of these graphs for which the rate that this probability approaches 1 does not depend on the particular graph. Similar results are shown to hold in cases where restrictions are placed on the number of edges per branch in a graph embedding." @default.
- W1552014241 created "2016-06-24" @default.
- W1552014241 creator A5018929525 @default.
- W1552014241 date "1998-01-01" @default.
- W1552014241 modified "2023-09-25" @default.
- W1552014241 title "Knots in Graphs in Subsets of Z 3" @default.
- W1552014241 cites W1511485913 @default.
- W1552014241 cites W1547644141 @default.
- W1552014241 cites W1642306673 @default.
- W1552014241 cites W1966853719 @default.
- W1552014241 cites W1975747249 @default.
- W1552014241 cites W1981131353 @default.
- W1552014241 cites W2016120835 @default.
- W1552014241 cites W2034647396 @default.
- W1552014241 cites W2058301955 @default.
- W1552014241 cites W2073400538 @default.
- W1552014241 cites W2085529455 @default.
- W1552014241 cites W2094584557 @default.
- W1552014241 cites W2099817679 @default.
- W1552014241 doi "https://doi.org/10.1007/978-1-4612-1712-1_10" @default.
- W1552014241 hasPublicationYear "1998" @default.
- W1552014241 type Work @default.
- W1552014241 sameAs 1552014241 @default.
- W1552014241 citedByCount "35" @default.
- W1552014241 countsByYear W15520142412012 @default.
- W1552014241 countsByYear W15520142412014 @default.
- W1552014241 countsByYear W15520142412015 @default.
- W1552014241 countsByYear W15520142412017 @default.
- W1552014241 countsByYear W15520142412018 @default.
- W1552014241 countsByYear W15520142412019 @default.
- W1552014241 crossrefType "book-chapter" @default.
- W1552014241 hasAuthorship W1552014241A5018929525 @default.
- W1552014241 hasConcept C102192266 @default.
- W1552014241 hasConcept C103257674 @default.
- W1552014241 hasConcept C114614502 @default.
- W1552014241 hasConcept C118615104 @default.
- W1552014241 hasConcept C132525143 @default.
- W1552014241 hasConcept C134306372 @default.
- W1552014241 hasConcept C154945302 @default.
- W1552014241 hasConcept C202444582 @default.
- W1552014241 hasConcept C203776342 @default.
- W1552014241 hasConcept C33923547 @default.
- W1552014241 hasConcept C34388435 @default.
- W1552014241 hasConcept C41008148 @default.
- W1552014241 hasConcept C41608201 @default.
- W1552014241 hasConcept C43058520 @default.
- W1552014241 hasConcept C53469067 @default.
- W1552014241 hasConceptScore W1552014241C102192266 @default.
- W1552014241 hasConceptScore W1552014241C103257674 @default.
- W1552014241 hasConceptScore W1552014241C114614502 @default.
- W1552014241 hasConceptScore W1552014241C118615104 @default.
- W1552014241 hasConceptScore W1552014241C132525143 @default.
- W1552014241 hasConceptScore W1552014241C134306372 @default.
- W1552014241 hasConceptScore W1552014241C154945302 @default.
- W1552014241 hasConceptScore W1552014241C202444582 @default.
- W1552014241 hasConceptScore W1552014241C203776342 @default.
- W1552014241 hasConceptScore W1552014241C33923547 @default.
- W1552014241 hasConceptScore W1552014241C34388435 @default.
- W1552014241 hasConceptScore W1552014241C41008148 @default.
- W1552014241 hasConceptScore W1552014241C41608201 @default.
- W1552014241 hasConceptScore W1552014241C43058520 @default.
- W1552014241 hasConceptScore W1552014241C53469067 @default.
- W1552014241 hasLocation W15520142411 @default.
- W1552014241 hasOpenAccess W1552014241 @default.
- W1552014241 hasPrimaryLocation W15520142411 @default.
- W1552014241 hasRelatedWork W1552014241 @default.
- W1552014241 hasRelatedWork W1968753385 @default.
- W1552014241 hasRelatedWork W2042939975 @default.
- W1552014241 hasRelatedWork W2143498657 @default.
- W1552014241 hasRelatedWork W2170114629 @default.
- W1552014241 hasRelatedWork W2368524975 @default.
- W1552014241 hasRelatedWork W2789779990 @default.
- W1552014241 hasRelatedWork W2963631220 @default.
- W1552014241 hasRelatedWork W3002604364 @default.
- W1552014241 hasRelatedWork W87964322 @default.
- W1552014241 isParatext "false" @default.
- W1552014241 isRetracted "false" @default.
- W1552014241 magId "1552014241" @default.
- W1552014241 workType "book-chapter" @default.