Matches in SemOpenAlex for { <https://semopenalex.org/work/W1552276385> ?p ?o ?g. }
- W1552276385 abstract "Abstract In comparison with other metals few papers have been published on the selective determination of antimony species, reflecting the lack of knowledge of its environmental chemistry. Nevertheless, interest in the determination of this toxic element, even at trace level, has grown over the last few decades as a consequence of an increment in its industrial applications. Nowadays antimony has a number of industrial applications such as the use of Sb-Ga and Sb-In alloys in semiconductors that are promising materials in the manufacture of high speed computer chips [1] and for optical information memories operated by laser signals (compact discs, digital optical recording devices, etc.). Antimony is also used in certain therapeutic agents against major tropical parasitic diseases, although in recent years it has been increasingly replaced by other agents, mainly antibiotics. Recently it has been observed that ammonium-5-tungsto-2-antimoniate is an effective inhibitor of reverse transcriptase and therefore of possible utility against the AIDS virus [2]. Antimony is released into the environment from natural processes (e.g. the weathering of rocks and soil runoff), mining effluents and industry (e.g. glasses, semiconductors, dyestuffs, ceramics and fire retardants). In the particular case of antimony oxide the main polluters are the smelting industry and the fossil fuel power stations. Around 3.8 10 10 g/year of antimony are released into the environment as a result of human activities, and it may be transported long distances through the atmosphere before accumulating in soil, lichens, etc . For these reasons, antimony and its compounds are considered to be pollutants of priority interest by the US Environmental Protection Agency (EPA). Four species of antimony have been identified in natural waters: Sb(III), Sb(V), monomethylstibonic acid and dimethylstibinic acid. In oxygenated waters the predominant species is Sb(V), although higher concentrations of Sb(III) and methylated compounds than would be expected from thermodynamic calculations have been detected. This could be attributed to microbial activity, which is suspected to favour such a transformation as a detoxification mechanism since the methylated species of antimony are less toxic than the inorganic ones. In view of the high toxicity of antimony (European Community Standards set the maximum admissible level of antimony in drinking and surface water at 10 g.l 1 it is essential to develop sensitive analytical methods for its determination in natural samples. However, as in many other instances, it is not sufficient to determine the total concentration of antimony, and the concentration of the different species present in the sample must be known, since it affects: a) toxicity (Sb(III) is more toxic than Sb(V) [3] and inorganic oxyanions are normally more toxic than organic compounds [4]), b) metabolism: Sb(V) is eliminated mainly in urine and Sb(III) in faeces [5], and c) reactivity, e.g. stibine is generated more efficiently from Sb(III) than from Sb(V) in antimony hydride generation [6]. The purpose of this chapter is to summarize and to discuss the existing analytical methods for antimony speciation in water, in order to provide easy access to this topic to all interested researchers." @default.
- W1552276385 created "2016-06-24" @default.
- W1552276385 creator A5008292241 @default.
- W1552276385 creator A5035792370 @default.
- W1552276385 creator A5055411953 @default.
- W1552276385 date "1995-01-01" @default.
- W1552276385 modified "2023-09-30" @default.
- W1552276385 title "11. Antimony speciation in water" @default.
- W1552276385 cites W1509674538 @default.
- W1552276385 cites W1516461961 @default.
- W1552276385 cites W1556328963 @default.
- W1552276385 cites W1963864598 @default.
- W1552276385 cites W1965719259 @default.
- W1552276385 cites W1969281041 @default.
- W1552276385 cites W1969966941 @default.
- W1552276385 cites W1977627018 @default.
- W1552276385 cites W1978623351 @default.
- W1552276385 cites W1979067225 @default.
- W1552276385 cites W1982912836 @default.
- W1552276385 cites W1998314611 @default.
- W1552276385 cites W1999954844 @default.
- W1552276385 cites W2009712905 @default.
- W1552276385 cites W2013612916 @default.
- W1552276385 cites W2018672475 @default.
- W1552276385 cites W2020169682 @default.
- W1552276385 cites W2023981795 @default.
- W1552276385 cites W2026815142 @default.
- W1552276385 cites W2027861910 @default.
- W1552276385 cites W2028089866 @default.
- W1552276385 cites W2030704087 @default.
- W1552276385 cites W2034955368 @default.
- W1552276385 cites W2035874269 @default.
- W1552276385 cites W2038924706 @default.
- W1552276385 cites W2050375775 @default.
- W1552276385 cites W2051194467 @default.
- W1552276385 cites W2059392768 @default.
- W1552276385 cites W2063112062 @default.
- W1552276385 cites W2070178919 @default.
- W1552276385 cites W2070403221 @default.
- W1552276385 cites W2085037963 @default.
- W1552276385 cites W208543464 @default.
- W1552276385 cites W2088333136 @default.
- W1552276385 cites W2088695132 @default.
- W1552276385 cites W2092705368 @default.
- W1552276385 cites W2111889072 @default.
- W1552276385 cites W2137723074 @default.
- W1552276385 cites W2151551521 @default.
- W1552276385 cites W2525893439 @default.
- W1552276385 cites W2886742997 @default.
- W1552276385 cites W2274321790 @default.
- W1552276385 doi "https://doi.org/10.1016/s0167-9244(06)80012-0" @default.
- W1552276385 hasPublicationYear "1995" @default.
- W1552276385 type Work @default.
- W1552276385 sameAs 1552276385 @default.
- W1552276385 citedByCount "1" @default.
- W1552276385 countsByYear W15522763852015 @default.
- W1552276385 crossrefType "book-chapter" @default.
- W1552276385 hasAuthorship W1552276385A5008292241 @default.
- W1552276385 hasAuthorship W1552276385A5035792370 @default.
- W1552276385 hasAuthorship W1552276385A5055411953 @default.
- W1552276385 hasConcept C107872376 @default.
- W1552276385 hasConcept C127313418 @default.
- W1552276385 hasConcept C157247726 @default.
- W1552276385 hasConcept C17409809 @default.
- W1552276385 hasConcept C178790620 @default.
- W1552276385 hasConcept C179104552 @default.
- W1552276385 hasConcept C185592680 @default.
- W1552276385 hasConcept C191897082 @default.
- W1552276385 hasConcept C192562407 @default.
- W1552276385 hasConcept C40724407 @default.
- W1552276385 hasConcept C541565711 @default.
- W1552276385 hasConceptScore W1552276385C107872376 @default.
- W1552276385 hasConceptScore W1552276385C127313418 @default.
- W1552276385 hasConceptScore W1552276385C157247726 @default.
- W1552276385 hasConceptScore W1552276385C17409809 @default.
- W1552276385 hasConceptScore W1552276385C178790620 @default.
- W1552276385 hasConceptScore W1552276385C179104552 @default.
- W1552276385 hasConceptScore W1552276385C185592680 @default.
- W1552276385 hasConceptScore W1552276385C191897082 @default.
- W1552276385 hasConceptScore W1552276385C192562407 @default.
- W1552276385 hasConceptScore W1552276385C40724407 @default.
- W1552276385 hasConceptScore W1552276385C541565711 @default.
- W1552276385 hasLocation W15522763851 @default.
- W1552276385 hasOpenAccess W1552276385 @default.
- W1552276385 hasPrimaryLocation W15522763851 @default.
- W1552276385 hasRelatedWork W148685539 @default.
- W1552276385 hasRelatedWork W1489524933 @default.
- W1552276385 hasRelatedWork W1628283445 @default.
- W1552276385 hasRelatedWork W1813237570 @default.
- W1552276385 hasRelatedWork W1992029818 @default.
- W1552276385 hasRelatedWork W1998086209 @default.
- W1552276385 hasRelatedWork W2270033615 @default.
- W1552276385 hasRelatedWork W2339752934 @default.
- W1552276385 hasRelatedWork W2382651539 @default.
- W1552276385 hasRelatedWork W2482706366 @default.
- W1552276385 hasRelatedWork W2587518328 @default.
- W1552276385 hasRelatedWork W2764215471 @default.
- W1552276385 hasRelatedWork W3095570217 @default.
- W1552276385 hasRelatedWork W3142739664 @default.
- W1552276385 hasRelatedWork W3170685907 @default.