Matches in SemOpenAlex for { <https://semopenalex.org/work/W155233463> ?p ?o ?g. }
- W155233463 abstract "Statistical graphics play an important role in exploratory data analysis, model checking and diagnosis. Recent developments suggest that visual inference helps to quantify the significance of findings made from graphics. In visual inference, lineups embed the plot of the data among a set of null plots, and engage a human observer to select the plot that is most different from the rest. If the data plot is selected it corresponds to the rejection of a null hypothesis. With high dimensional data, statistical graphics are obtained by plotting low-dimensional projections, for example, in classification tasks projection pursuit is used to find low-dimensional projections that reveal differences between labelled groups. In many contemporary data sets the number of observations is relatively small compared to the number of variables, which is known as a high dimension low sample size (HDLSS) problem. The research conducted and described in this thesis explores the use of visual inference on understanding low dimensional pictures of HDLSS data. This approach may be helpful to broaden the understanding of issues related to HDLSS data in the data analysis community. Methods are illustrated using data from a published paper, which erroneously found real separation in microarray data. The thesis also describes metrics developed to assist the use of lineups for making inferential statements. Metrics measure the quality of the lineup, and help to understand what people see in the data plots. The null plots represent a finite sample from a null distribution, and the selected sample potentially affects the ease or difficulty of a lineup. Distance metrics are designed to describe how close the true data plot is to the null plots, and how close the null plots are to each other. The distribution of the distance metrics is studied to learn how well this matches to what people detect in the plots, the effect of null generating mechanism and plot choices for particular tasks. The analysis was conducted on data collected from Amazon Turk studies conducted with lineups for studying an array of exploratory data analysis tasks. Finally an R package is constructed to provide open source tools to use visual inference and distance metrics." @default.
- W155233463 created "2016-06-24" @default.
- W155233463 creator A5040931954 @default.
- W155233463 date "2018-08-10" @default.
- W155233463 modified "2023-09-23" @default.
- W155233463 title "Explorations of the lineup protocol for visual inference: application to high dimension, low sample size problems and metrics to assess the quality" @default.
- W155233463 cites W1484462106 @default.
- W155233463 cites W1587026990 @default.
- W155233463 cites W1915008591 @default.
- W155233463 cites W1925612170 @default.
- W155233463 cites W1966701961 @default.
- W155233463 cites W1968989359 @default.
- W155233463 cites W1971781829 @default.
- W155233463 cites W1984217368 @default.
- W155233463 cites W1993638366 @default.
- W155233463 cites W2003953346 @default.
- W155233463 cites W2007527993 @default.
- W155233463 cites W2011058684 @default.
- W155233463 cites W2036852794 @default.
- W155233463 cites W2045638068 @default.
- W155233463 cites W2053186076 @default.
- W155233463 cites W2060519623 @default.
- W155233463 cites W2064921494 @default.
- W155233463 cites W2069353545 @default.
- W155233463 cites W2079201812 @default.
- W155233463 cites W2082612735 @default.
- W155233463 cites W2096080031 @default.
- W155233463 cites W2099741732 @default.
- W155233463 cites W2105415244 @default.
- W155233463 cites W2112440119 @default.
- W155233463 cites W2117812871 @default.
- W155233463 cites W2122450421 @default.
- W155233463 cites W2130027785 @default.
- W155233463 cites W2149086733 @default.
- W155233463 cites W2160754664 @default.
- W155233463 cites W2168745915 @default.
- W155233463 cites W2169112940 @default.
- W155233463 cites W2252302919 @default.
- W155233463 cites W2319794630 @default.
- W155233463 cites W2374660402 @default.
- W155233463 cites W2582743722 @default.
- W155233463 cites W2799002609 @default.
- W155233463 cites W2799445215 @default.
- W155233463 cites W3100205528 @default.
- W155233463 cites W3146425672 @default.
- W155233463 cites W437016257 @default.
- W155233463 cites W1980073965 @default.
- W155233463 cites W2088960431 @default.
- W155233463 doi "https://doi.org/10.31274/etd-180810-3358" @default.
- W155233463 hasPublicationYear "2018" @default.
- W155233463 type Work @default.
- W155233463 sameAs 155233463 @default.
- W155233463 citedByCount "0" @default.
- W155233463 crossrefType "dissertation" @default.
- W155233463 hasAuthorship W155233463A5040931954 @default.
- W155233463 hasBestOaLocation W1552334631 @default.
- W155233463 hasConcept C105795698 @default.
- W155233463 hasConcept C111472728 @default.
- W155233463 hasConcept C114614502 @default.
- W155233463 hasConcept C124101348 @default.
- W155233463 hasConcept C129848803 @default.
- W155233463 hasConcept C138885662 @default.
- W155233463 hasConcept C142724271 @default.
- W155233463 hasConcept C154945302 @default.
- W155233463 hasConcept C185592680 @default.
- W155233463 hasConcept C198531522 @default.
- W155233463 hasConcept C204787440 @default.
- W155233463 hasConcept C2776214188 @default.
- W155233463 hasConcept C2779530757 @default.
- W155233463 hasConcept C2780385302 @default.
- W155233463 hasConcept C33676613 @default.
- W155233463 hasConcept C33923547 @default.
- W155233463 hasConcept C41008148 @default.
- W155233463 hasConcept C43617362 @default.
- W155233463 hasConcept C71924100 @default.
- W155233463 hasConceptScore W155233463C105795698 @default.
- W155233463 hasConceptScore W155233463C111472728 @default.
- W155233463 hasConceptScore W155233463C114614502 @default.
- W155233463 hasConceptScore W155233463C124101348 @default.
- W155233463 hasConceptScore W155233463C129848803 @default.
- W155233463 hasConceptScore W155233463C138885662 @default.
- W155233463 hasConceptScore W155233463C142724271 @default.
- W155233463 hasConceptScore W155233463C154945302 @default.
- W155233463 hasConceptScore W155233463C185592680 @default.
- W155233463 hasConceptScore W155233463C198531522 @default.
- W155233463 hasConceptScore W155233463C204787440 @default.
- W155233463 hasConceptScore W155233463C2776214188 @default.
- W155233463 hasConceptScore W155233463C2779530757 @default.
- W155233463 hasConceptScore W155233463C2780385302 @default.
- W155233463 hasConceptScore W155233463C33676613 @default.
- W155233463 hasConceptScore W155233463C33923547 @default.
- W155233463 hasConceptScore W155233463C41008148 @default.
- W155233463 hasConceptScore W155233463C43617362 @default.
- W155233463 hasConceptScore W155233463C71924100 @default.
- W155233463 hasLocation W1552334631 @default.
- W155233463 hasOpenAccess W155233463 @default.
- W155233463 hasPrimaryLocation W1552334631 @default.
- W155233463 hasRelatedWork W1771779360 @default.
- W155233463 hasRelatedWork W1988747059 @default.
- W155233463 hasRelatedWork W1993731342 @default.