Matches in SemOpenAlex for { <https://semopenalex.org/work/W1552803711> ?p ?o ?g. }
- W1552803711 endingPage "267" @default.
- W1552803711 startingPage "256" @default.
- W1552803711 abstract "New Findings What is the central question of this study? In human arteries involved in the regulation of muscle blood flow, there is a lack of data about whether acidosis alters vascular sensitivity to vasoactive agents, as well as altering endothelium dependent vasorelaxation. Little is known about the interaction of metabolites and vascular function in human skeletal muscle feed arteries. What is the main finding and its importance? Increasing acidosis attenuated the response and sensitivity of the arteries to phenylephrine; this effect was selective to the receptor over smooth muscle. Acidosis did not alter endothelium dependent vasorelaxation. Impaired vasoconstriction coupled with intact vasorelaxation, promotes decreased vascular tone with exposure to acidosis, and may contribute to sympatholysis during exercise. Graded exercise results not only in the modulation of adrenergic mediated smooth muscle tone and a preferential increase in blood flow to the active skeletal muscle termed ‘functional sympatholysis’, but is also paralleled by metabolically induced reductions in pH. We therefore sought to determine whether pH attenuates α 1 ‐adrenergic receptor sensitivity in human feed arteries. Feed arteries (560 ± 31 μm i.d.) were harvested from 24 humans (55 ± 4 years old) and studied using the isometric tension technique. Vessel function was assessed using KCl, phenylephrine (PE), ACh and sodium nitroprusside (SNP) concentration–response curves to characterize non‐receptor‐mediated and receptor‐mediated vasocontraction, as well as endothelium‐dependent and ‐independent vasorelaxation, respectively. All concentration–response curves were obtained from (originally contiguous) vessel rings in separate baths with a pH of 7.4, 7.1, 6.8 or 6.5. Reduction of the pH, via HCl, reduced maximal PE‐induced vasocontraction (pH 7.4 = 85 ± 19, pH 7.1 = 57 ± 16, pH 6.8 = 34 ± 15 and pH 6.5 = 16 ± 5% KCl max ), which was partly due to reduced smooth muscle function, as assessed by KCl (pH 7.4 = 88 ± 13, pH 7.1 = 67 ± 8, pH 6.8 = 67 ± 9 and pH 6.5 = 58 ± 8% KCl max ). Graded acidosis had no effect on maximal vasorelaxation. In summary, these data reveal that reductions in extracellular pH attenuate α 1 ‐mediated vasocontraction, which is partly explained by reduced smooth muscle function, although vasorelaxation in response to ACh and SNP remained intact. These findings support the concept that local acidosis is likely to contribute to functional sympatholysis and exercise hyperaemia by opposing sympathetically mediated vasoconstriction while not impacting vasodilatation." @default.
- W1552803711 created "2016-06-24" @default.
- W1552803711 creator A5000507568 @default.
- W1552803711 creator A5015554947 @default.
- W1552803711 creator A5016791114 @default.
- W1552803711 creator A5023524448 @default.
- W1552803711 creator A5029328939 @default.
- W1552803711 creator A5032181259 @default.
- W1552803711 creator A5035817009 @default.
- W1552803711 creator A5081008971 @default.
- W1552803711 date "2012-08-15" @default.
- W1552803711 modified "2023-10-15" @default.
- W1552803711 title "α<sub>1</sub>-Adrenergic responsiveness in human skeletal muscle feed arteries: the impact of reducing extracellular pH" @default.
- W1552803711 cites W1551055437 @default.
- W1552803711 cites W157594354 @default.
- W1552803711 cites W1598305284 @default.
- W1552803711 cites W1964215363 @default.
- W1552803711 cites W1973764150 @default.
- W1552803711 cites W1978104136 @default.
- W1552803711 cites W1978495288 @default.
- W1552803711 cites W1980945503 @default.
- W1552803711 cites W1987646391 @default.
- W1552803711 cites W1987789988 @default.
- W1552803711 cites W2011062375 @default.
- W1552803711 cites W2015414803 @default.
- W1552803711 cites W2016259822 @default.
- W1552803711 cites W2027170868 @default.
- W1552803711 cites W2029629440 @default.
- W1552803711 cites W2032702492 @default.
- W1552803711 cites W2034863287 @default.
- W1552803711 cites W2064963378 @default.
- W1552803711 cites W2066082209 @default.
- W1552803711 cites W2066086678 @default.
- W1552803711 cites W2068835466 @default.
- W1552803711 cites W2075464162 @default.
- W1552803711 cites W2092928881 @default.
- W1552803711 cites W2093285892 @default.
- W1552803711 cites W2097012970 @default.
- W1552803711 cites W2099381868 @default.
- W1552803711 cites W2099437428 @default.
- W1552803711 cites W2100720343 @default.
- W1552803711 cites W2114598380 @default.
- W1552803711 cites W2120169546 @default.
- W1552803711 cites W2127318804 @default.
- W1552803711 cites W2127803356 @default.
- W1552803711 cites W2133498153 @default.
- W1552803711 cites W2136999044 @default.
- W1552803711 cites W2143384875 @default.
- W1552803711 cites W2149528947 @default.
- W1552803711 cites W2154239903 @default.
- W1552803711 cites W2158917424 @default.
- W1552803711 cites W2161754170 @default.
- W1552803711 cites W2163236560 @default.
- W1552803711 cites W2166097742 @default.
- W1552803711 cites W2171756298 @default.
- W1552803711 cites W2182623264 @default.
- W1552803711 cites W2185218164 @default.
- W1552803711 cites W2202035363 @default.
- W1552803711 cites W2222812631 @default.
- W1552803711 cites W2242328726 @default.
- W1552803711 cites W2262677865 @default.
- W1552803711 cites W2277288131 @default.
- W1552803711 cites W2406001398 @default.
- W1552803711 cites W2410332689 @default.
- W1552803711 cites W2411353955 @default.
- W1552803711 cites W2419057813 @default.
- W1552803711 cites W2425905736 @default.
- W1552803711 cites W2432221551 @default.
- W1552803711 cites W2464224536 @default.
- W1552803711 doi "https://doi.org/10.1113/expphysiol.2012.066613" @default.
- W1552803711 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4465408" @default.
- W1552803711 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22798402" @default.
- W1552803711 hasPublicationYear "2012" @default.
- W1552803711 type Work @default.
- W1552803711 sameAs 1552803711 @default.
- W1552803711 citedByCount "26" @default.
- W1552803711 countsByYear W15528037112013 @default.
- W1552803711 countsByYear W15528037112014 @default.
- W1552803711 countsByYear W15528037112015 @default.
- W1552803711 countsByYear W15528037112016 @default.
- W1552803711 countsByYear W15528037112017 @default.
- W1552803711 countsByYear W15528037112018 @default.
- W1552803711 countsByYear W15528037112019 @default.
- W1552803711 countsByYear W15528037112020 @default.
- W1552803711 countsByYear W15528037112022 @default.
- W1552803711 crossrefType "journal-article" @default.
- W1552803711 hasAuthorship W1552803711A5000507568 @default.
- W1552803711 hasAuthorship W1552803711A5015554947 @default.
- W1552803711 hasAuthorship W1552803711A5016791114 @default.
- W1552803711 hasAuthorship W1552803711A5023524448 @default.
- W1552803711 hasAuthorship W1552803711A5029328939 @default.
- W1552803711 hasAuthorship W1552803711A5032181259 @default.
- W1552803711 hasAuthorship W1552803711A5035817009 @default.
- W1552803711 hasAuthorship W1552803711A5081008971 @default.
- W1552803711 hasBestOaLocation W15528037111 @default.
- W1552803711 hasConcept C103486182 @default.
- W1552803711 hasConcept C120770815 @default.
- W1552803711 hasConcept C126322002 @default.