Matches in SemOpenAlex for { <https://semopenalex.org/work/W1552872738> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W1552872738 abstract "The problem of selecting the most useful features from a great many (eg, thousands) of candidates arises in many areas of modern sciences. An interesting problem from genomic research is that, from thousands of genes that are active (expressed) in certain tissue cells, we want to find the genes that can be used to separate tissues of different classes (eg. cancer and normal). In this paper, we report our empirical experiences of using Bayesian logistic regression based on heavy-tailed priors with moderately small degree freedom (such as 1) and very small scale, and using Hamiltonian Monte Carlo to do computation. We discuss the advantages and limitations of this method, and illustrate the difficulties that remain unsolved. The method is applied to a real microarray data set related to prostate cancer. The method identifies only 3 non-redundant genes out of 6033 candidates but achieves better leave-one-out cross-validated prediction accuracy than many other methods." @default.
- W1552872738 created "2016-06-24" @default.
- W1552872738 creator A5004606852 @default.
- W1552872738 creator A5025749190 @default.
- W1552872738 date "2013-08-21" @default.
- W1552872738 modified "2023-10-16" @default.
- W1552872738 title "High-dimensional Feature Selection Using Hierarchical Bayesian Logistic Regression with Heavy-tailed Priors" @default.
- W1552872738 cites W1579925870 @default.
- W1552872738 cites W1959944918 @default.
- W1552872738 cites W1966411627 @default.
- W1552872738 cites W1966701961 @default.
- W1552872738 cites W1972928786 @default.
- W1552872738 cites W1977868384 @default.
- W1552872738 cites W1982652137 @default.
- W1552872738 cites W1993528080 @default.
- W1552872738 cites W1999676174 @default.
- W1552872738 cites W2010111480 @default.
- W1552872738 cites W2043719428 @default.
- W1552872738 cites W2050029156 @default.
- W1552872738 cites W2060512257 @default.
- W1552872738 cites W2114169935 @default.
- W1552872738 cites W2132555912 @default.
- W1552872738 cites W2147272585 @default.
- W1552872738 cites W2155423555 @default.
- W1552872738 cites W2156332695 @default.
- W1552872738 cites W2159400887 @default.
- W1552872738 cites W2161828876 @default.
- W1552872738 cites W2161839304 @default.
- W1552872738 cites W2204383650 @default.
- W1552872738 cites W2478027467 @default.
- W1552872738 cites W2497431972 @default.
- W1552872738 doi "https://doi.org/10.48550/arxiv.1308.4690" @default.
- W1552872738 hasPublicationYear "2013" @default.
- W1552872738 type Work @default.
- W1552872738 sameAs 1552872738 @default.
- W1552872738 citedByCount "0" @default.
- W1552872738 crossrefType "posted-content" @default.
- W1552872738 hasAuthorship W1552872738A5004606852 @default.
- W1552872738 hasAuthorship W1552872738A5025749190 @default.
- W1552872738 hasBestOaLocation W15528727381 @default.
- W1552872738 hasConcept C107673813 @default.
- W1552872738 hasConcept C119857082 @default.
- W1552872738 hasConcept C124101348 @default.
- W1552872738 hasConcept C148483581 @default.
- W1552872738 hasConcept C151956035 @default.
- W1552872738 hasConcept C154945302 @default.
- W1552872738 hasConcept C177769412 @default.
- W1552872738 hasConcept C41008148 @default.
- W1552872738 hasConceptScore W1552872738C107673813 @default.
- W1552872738 hasConceptScore W1552872738C119857082 @default.
- W1552872738 hasConceptScore W1552872738C124101348 @default.
- W1552872738 hasConceptScore W1552872738C148483581 @default.
- W1552872738 hasConceptScore W1552872738C151956035 @default.
- W1552872738 hasConceptScore W1552872738C154945302 @default.
- W1552872738 hasConceptScore W1552872738C177769412 @default.
- W1552872738 hasConceptScore W1552872738C41008148 @default.
- W1552872738 hasLocation W15528727381 @default.
- W1552872738 hasLocation W15528727382 @default.
- W1552872738 hasOpenAccess W1552872738 @default.
- W1552872738 hasPrimaryLocation W15528727381 @default.
- W1552872738 hasRelatedWork W2901495210 @default.
- W1552872738 hasRelatedWork W2973799232 @default.
- W1552872738 hasRelatedWork W3016925281 @default.
- W1552872738 hasRelatedWork W3174196512 @default.
- W1552872738 hasRelatedWork W3200179079 @default.
- W1552872738 hasRelatedWork W3210877509 @default.
- W1552872738 hasRelatedWork W4212852473 @default.
- W1552872738 hasRelatedWork W4225360065 @default.
- W1552872738 hasRelatedWork W4295514622 @default.
- W1552872738 hasRelatedWork W4366376591 @default.
- W1552872738 isParatext "false" @default.
- W1552872738 isRetracted "false" @default.
- W1552872738 magId "1552872738" @default.
- W1552872738 workType "article" @default.