Matches in SemOpenAlex for { <https://semopenalex.org/work/W1553002839> ?p ?o ?g. }
- W1553002839 abstract "Enzymes are without question the most powerful, versatile and efficient, wide-spread biocatalysts in the biological world, being responsible for remarkable reaction rate enhancements. Enzymes are also very specific, able to discriminate between substrates with quite similar structures. They exhibit different types of selectivity (chemo-, enantio-, regioand diastereoselectivity) and can catalyse a broad range of reactions. Moreover they are environmentally friendly, acting under mild conditions. They are used in many biotechnological domains, as isolated enzymes or whole cells, in free or immobilized form. The dual character of an enzyme, as both protein and catalyst, brings face to face the special properties of proteins like activity, selectivity, inhibition phenomena, unfolding in a harsh environment with the need for stability, reproducibility, long term reusability of the catalyst. The catalytic activity of enzymes depends on the integrity of their native protein conformation. If an enzyme is denatured or dissociated into its subunits, catalytic activity is usually lost. Thus the primary, secondary, tertiary, and quaternary structures of protein enzymes are essential to their catalytic activity. Therefore, enzymes cannot be used at high temperature, extreme pH or high ionic strength, operation parameters that could lead to enzyme deactivation. Another issue that limits the efficiency of the enzymatic reactions is the substrate or product inhibition – the enzyme stops working at higher substrate and/or product concentration (Chibata, 1978; Smith, 2004). So, reliable techniques for protein stabilization are of great practical importance (Rothenberg, 2008). Enzymes in biosensors are used in an “immobilized” form. Even though at the beginning of the 21th century immobilization of biomolecules may be at a first glance a solved problem, reality shows that work has yet to be done in order to obtain stable, longliving robust and active biocatalysts, even if they are isolated biomolecules (enzymes, proteins, nucleic acids), whole cells or other biological species. A lot of immobilization methods are available. Among them, sol-gel technology application in biosensing has been of great interest in the last two decades. Sol-gel technology (Brinker & Scherer, 1990) opens a simple route to produce materials like glasses, monoliths, powders, thin films in mild conditions. Inorganic and hybrid organic-inorganic micro and nanostructered matrices based mainly on silica gels will be briefly described. Enzymes" @default.
- W1553002839 created "2016-06-24" @default.
- W1553002839 creator A5004052351 @default.
- W1553002839 creator A5077590176 @default.
- W1553002839 creator A5085764944 @default.
- W1553002839 date "2011-07-19" @default.
- W1553002839 modified "2023-09-24" @default.
- W1553002839 title "Sol-gel technology in enzymatic electrochemical biosensors for clinical analysis" @default.
- W1553002839 cites W1517127273 @default.
- W1553002839 cites W1623645098 @default.
- W1553002839 cites W1817000002 @default.
- W1553002839 cites W1964542421 @default.
- W1553002839 cites W1965200308 @default.
- W1553002839 cites W1971785970 @default.
- W1553002839 cites W1973056643 @default.
- W1553002839 cites W1980633485 @default.
- W1553002839 cites W1983762798 @default.
- W1553002839 cites W1985565843 @default.
- W1553002839 cites W1988686190 @default.
- W1553002839 cites W1988844265 @default.
- W1553002839 cites W1996289659 @default.
- W1553002839 cites W1999394980 @default.
- W1553002839 cites W2004736016 @default.
- W1553002839 cites W2007510046 @default.
- W1553002839 cites W2009410015 @default.
- W1553002839 cites W2013995801 @default.
- W1553002839 cites W2014898375 @default.
- W1553002839 cites W2015949596 @default.
- W1553002839 cites W2016636808 @default.
- W1553002839 cites W2018584517 @default.
- W1553002839 cites W2021425036 @default.
- W1553002839 cites W2021764143 @default.
- W1553002839 cites W2022032977 @default.
- W1553002839 cites W2031886655 @default.
- W1553002839 cites W2037865481 @default.
- W1553002839 cites W2043407252 @default.
- W1553002839 cites W2043451183 @default.
- W1553002839 cites W2044468923 @default.
- W1553002839 cites W2045073537 @default.
- W1553002839 cites W2047487070 @default.
- W1553002839 cites W2049076657 @default.
- W1553002839 cites W2049293347 @default.
- W1553002839 cites W2050516259 @default.
- W1553002839 cites W2053899712 @default.
- W1553002839 cites W2058247119 @default.
- W1553002839 cites W2058397613 @default.
- W1553002839 cites W2058666300 @default.
- W1553002839 cites W2058918567 @default.
- W1553002839 cites W2060501662 @default.
- W1553002839 cites W2064250000 @default.
- W1553002839 cites W2068441311 @default.
- W1553002839 cites W2073925676 @default.
- W1553002839 cites W2076927624 @default.
- W1553002839 cites W2078307829 @default.
- W1553002839 cites W2079639677 @default.
- W1553002839 cites W2080863056 @default.
- W1553002839 cites W2084317732 @default.
- W1553002839 cites W2086189101 @default.
- W1553002839 cites W2086526259 @default.
- W1553002839 cites W2086864633 @default.
- W1553002839 cites W2090006558 @default.
- W1553002839 cites W2090712802 @default.
- W1553002839 cites W2090868198 @default.
- W1553002839 cites W2099439711 @default.
- W1553002839 cites W2102616257 @default.
- W1553002839 cites W2133467988 @default.
- W1553002839 cites W2142502076 @default.
- W1553002839 cites W2142579559 @default.
- W1553002839 cites W2143887132 @default.
- W1553002839 cites W2155714193 @default.
- W1553002839 cites W2163543182 @default.
- W1553002839 cites W2184783025 @default.
- W1553002839 cites W2321964747 @default.
- W1553002839 cites W2486007350 @default.
- W1553002839 cites W2608316637 @default.
- W1553002839 cites W327433332 @default.
- W1553002839 cites W37924335 @default.
- W1553002839 cites W576590056 @default.
- W1553002839 cites W579737224 @default.
- W1553002839 cites W586102426 @default.
- W1553002839 cites W61265859 @default.
- W1553002839 doi "https://doi.org/10.5772/19622" @default.
- W1553002839 hasPublicationYear "2011" @default.
- W1553002839 type Work @default.
- W1553002839 sameAs 1553002839 @default.
- W1553002839 citedByCount "3" @default.
- W1553002839 countsByYear W15530028392013 @default.
- W1553002839 countsByYear W15530028392016 @default.
- W1553002839 countsByYear W15530028392017 @default.
- W1553002839 crossrefType "book-chapter" @default.
- W1553002839 hasAuthorship W1553002839A5004052351 @default.
- W1553002839 hasAuthorship W1553002839A5077590176 @default.
- W1553002839 hasAuthorship W1553002839A5085764944 @default.
- W1553002839 hasBestOaLocation W15530028391 @default.
- W1553002839 hasConcept C147789679 @default.
- W1553002839 hasConcept C160756335 @default.
- W1553002839 hasConcept C171250308 @default.
- W1553002839 hasConcept C17525397 @default.
- W1553002839 hasConcept C185592680 @default.
- W1553002839 hasConcept C192562407 @default.