Matches in SemOpenAlex for { <https://semopenalex.org/work/W1554012020> ?p ?o ?g. }
- W1554012020 abstract "The purpose of this thesis is to develop new methods for automatic transcription of melody and harmonic parts of real-life music signal. Music transcription is here defined as an act of analyzing a piece of music signal and writing down the parameter representations, which indicate the pitch, onset time and duration of each pitch, loudness and instrument applied in the analyzed music signal. The proposed algorithms and methods aim at resolving two key sub-problems in automatic music transcription: music onset detection and polyphonic pitch estimation. There are three original contributions in this thesis. The first is an original frequency-dependent time-frequency analysis tool called the Resonator Time-Frequency Image (RTFI). By simply defining a parameterized function mapping frequency to the exponent decay factor of the complex resonator filter bank, the RTFI can easily and flexibly implement the time-frequency analysis with different time-frequency resolutions such as ear-like (similar to human ear frequency analyzer), constant-Q or uniform (evenly-spaced) time-frequency resolutions. The corresponding multi-resolution fast implementation of RTFI has also been developed. The second original contribution consists of two new music onset detection algorithms: Energy-based detection algorithm and Pitch-based detection algorithm. The Energy-based detection algorithm performs well on the detection of hard onsets. The Pitch-based detection algorithm is the first one, which successfully exploits the pitch change clue for the onset detection in real polyphonic music, and achieves a much better performance than the other existing detection algorithms for the detection of soft onsets. The third contribution is the development of two new polyphonic pitch estimation methods. They are based on the RTFI analysis. The first proposed estimation method mainly makes best of the harmonic relation and spectral smoothing principle, consequently achieves an excellent performance on the real polyphonic music signals. The second proposed polyphonic pitch estimation method is based on the combination of signal processing and machine learning. The basic idea behind this method is to transform the polyphonic pitch estimation as a pattern recognition problem. The proposed estimation method is mainly composed by a signal processing block followed by a learning machine. Multi-resolution fast RTFI analysis is used as a signal processing component, and support vector machine (SVM) is selected as learning machine. The experimental result of the first approach show clear improvement versus the other state of the art methods." @default.
- W1554012020 created "2016-06-24" @default.
- W1554012020 creator A5013306597 @default.
- W1554012020 date "2006-01-01" @default.
- W1554012020 modified "2023-09-23" @default.
- W1554012020 title "Feature extraction of musical content for automatic music transcription" @default.
- W1554012020 cites W110296819 @default.
- W1554012020 cites W1489184006 @default.
- W1554012020 cites W1496437476 @default.
- W1554012020 cites W1510526001 @default.
- W1554012020 cites W154488289 @default.
- W1554012020 cites W1563088657 @default.
- W1554012020 cites W1607142029 @default.
- W1554012020 cites W1618905105 @default.
- W1554012020 cites W1667440604 @default.
- W1554012020 cites W173144542 @default.
- W1554012020 cites W1807354010 @default.
- W1554012020 cites W1999528738 @default.
- W1554012020 cites W2043112500 @default.
- W1554012020 cites W2043694038 @default.
- W1554012020 cites W2048508162 @default.
- W1554012020 cites W2057085895 @default.
- W1554012020 cites W2057183507 @default.
- W1554012020 cites W2059260101 @default.
- W1554012020 cites W2088689299 @default.
- W1554012020 cites W2104112890 @default.
- W1554012020 cites W2104497281 @default.
- W1554012020 cites W2110017348 @default.
- W1554012020 cites W2110565886 @default.
- W1554012020 cites W2114640443 @default.
- W1554012020 cites W2115026158 @default.
- W1554012020 cites W2115755118 @default.
- W1554012020 cites W2120132744 @default.
- W1554012020 cites W2125565515 @default.
- W1554012020 cites W2126057043 @default.
- W1554012020 cites W2132984323 @default.
- W1554012020 cites W2149410414 @default.
- W1554012020 cites W2153635508 @default.
- W1554012020 cites W2155208345 @default.
- W1554012020 cites W2156909104 @default.
- W1554012020 cites W2158226908 @default.
- W1554012020 cites W2158983491 @default.
- W1554012020 cites W2241561517 @default.
- W1554012020 cites W2282078507 @default.
- W1554012020 cites W24579641 @default.
- W1554012020 cites W3163638146 @default.
- W1554012020 cites W396690109 @default.
- W1554012020 cites W9205999 @default.
- W1554012020 cites W127854018 @default.
- W1554012020 doi "https://doi.org/10.5075/epfl-thesis-3638" @default.
- W1554012020 hasPublicationYear "2006" @default.
- W1554012020 type Work @default.
- W1554012020 sameAs 1554012020 @default.
- W1554012020 citedByCount "15" @default.
- W1554012020 countsByYear W15540120202012 @default.
- W1554012020 countsByYear W15540120202014 @default.
- W1554012020 countsByYear W15540120202015 @default.
- W1554012020 countsByYear W15540120202016 @default.
- W1554012020 crossrefType "journal-article" @default.
- W1554012020 hasAuthorship W1554012020A5013306597 @default.
- W1554012020 hasConcept C11413529 @default.
- W1554012020 hasConcept C121332964 @default.
- W1554012020 hasConcept C135622632 @default.
- W1554012020 hasConcept C138885662 @default.
- W1554012020 hasConcept C142362112 @default.
- W1554012020 hasConcept C153180895 @default.
- W1554012020 hasConcept C153349607 @default.
- W1554012020 hasConcept C153405242 @default.
- W1554012020 hasConcept C154945302 @default.
- W1554012020 hasConcept C179926584 @default.
- W1554012020 hasConcept C24890656 @default.
- W1554012020 hasConcept C2776539107 @default.
- W1554012020 hasConcept C28490314 @default.
- W1554012020 hasConcept C31972630 @default.
- W1554012020 hasConcept C41008148 @default.
- W1554012020 hasConcept C41895202 @default.
- W1554012020 hasConcept C558565934 @default.
- W1554012020 hasConcept C61328038 @default.
- W1554012020 hasConcept C79018884 @default.
- W1554012020 hasConceptScore W1554012020C11413529 @default.
- W1554012020 hasConceptScore W1554012020C121332964 @default.
- W1554012020 hasConceptScore W1554012020C135622632 @default.
- W1554012020 hasConceptScore W1554012020C138885662 @default.
- W1554012020 hasConceptScore W1554012020C142362112 @default.
- W1554012020 hasConceptScore W1554012020C153180895 @default.
- W1554012020 hasConceptScore W1554012020C153349607 @default.
- W1554012020 hasConceptScore W1554012020C153405242 @default.
- W1554012020 hasConceptScore W1554012020C154945302 @default.
- W1554012020 hasConceptScore W1554012020C179926584 @default.
- W1554012020 hasConceptScore W1554012020C24890656 @default.
- W1554012020 hasConceptScore W1554012020C2776539107 @default.
- W1554012020 hasConceptScore W1554012020C28490314 @default.
- W1554012020 hasConceptScore W1554012020C31972630 @default.
- W1554012020 hasConceptScore W1554012020C41008148 @default.
- W1554012020 hasConceptScore W1554012020C41895202 @default.
- W1554012020 hasConceptScore W1554012020C558565934 @default.
- W1554012020 hasConceptScore W1554012020C61328038 @default.
- W1554012020 hasConceptScore W1554012020C79018884 @default.
- W1554012020 hasLocation W15540120201 @default.
- W1554012020 hasOpenAccess W1554012020 @default.