Matches in SemOpenAlex for { <https://semopenalex.org/work/W1554694346> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W1554694346 abstract "Let {Yt}, t=1,..., T be a time series generated according to the model: Yt=f(Xt)+et t=1, ..., T where f is a non linear continuous function, Xt = (X1t, X2t, ...,Xdt) is a vector of d non stochastic explanatory variables defined on a compact X belonging Rd , and {et} are zero mean random variables with constant variance. The function f in the previous model can be approximated with a feed-forward neural networks. Many authors (Hornik et al., 1989 inter alia) showed that, under general regularity conditions, a sufficiently complex single hidden layer feedforward network can approximate any member of a class of function to any degree of accuracy. Of course to consider them a statistical technique it is necessary for the parameter estimators to verify the properties of convergence in probability and in distribution. White (1989) using sthocastic approximations shows that, under some general assumptions, back-propagation (a recursive estimation procedure) yelds estimates that are strongly consistent and asymptotically normal distibuted. In a previous paper (Giordano and Perna, 1999) we proved, using an approach based on the theory of M estimators (Huber, 1981), the consistency of the neural estimators and derived their limiting gaussian distribution in the case of regression models both when the error term is iid that when it is fourth order stationary and phi-mixing. The proposed approach only requires specification of the functional form of the objective function gradient. This result makes possible to test hypotheses about the connection strengths. Unfortunately the complexity of the variance covariance expression makes difficult to deal with the limiting distribution and no use of the asymptotic result can be done for inferential purpose. In this paper we propose to use resampling techniques to get an alternative estimate of the sampling distribution of the neural estimators. The proposed approach has the advantage that no analytical derivation is required and an higher order accuracy with respect to the asymptotic Normal distribution can be obtained." @default.
- W1554694346 created "2016-06-24" @default.
- W1554694346 creator A5014127212 @default.
- W1554694346 creator A5026946923 @default.
- W1554694346 creator A5070154983 @default.
- W1554694346 date "2000-07-05" @default.
- W1554694346 modified "2023-09-27" @default.
- W1554694346 title "INFERENCE BASED ON RESAMPLING TECHNIQUES FOR NEURAL NETWORKS IN REGRESSION MODELS" @default.
- W1554694346 hasPublicationYear "2000" @default.
- W1554694346 type Work @default.
- W1554694346 sameAs 1554694346 @default.
- W1554694346 citedByCount "0" @default.
- W1554694346 crossrefType "posted-content" @default.
- W1554694346 hasAuthorship W1554694346A5014127212 @default.
- W1554694346 hasAuthorship W1554694346A5026946923 @default.
- W1554694346 hasAuthorship W1554694346A5070154983 @default.
- W1554694346 hasConcept C105795698 @default.
- W1554694346 hasConcept C11413529 @default.
- W1554694346 hasConcept C150921843 @default.
- W1554694346 hasConcept C178650346 @default.
- W1554694346 hasConcept C185429906 @default.
- W1554694346 hasConcept C28826006 @default.
- W1554694346 hasConcept C33923547 @default.
- W1554694346 hasConcept C65778772 @default.
- W1554694346 hasConceptScore W1554694346C105795698 @default.
- W1554694346 hasConceptScore W1554694346C11413529 @default.
- W1554694346 hasConceptScore W1554694346C150921843 @default.
- W1554694346 hasConceptScore W1554694346C178650346 @default.
- W1554694346 hasConceptScore W1554694346C185429906 @default.
- W1554694346 hasConceptScore W1554694346C28826006 @default.
- W1554694346 hasConceptScore W1554694346C33923547 @default.
- W1554694346 hasConceptScore W1554694346C65778772 @default.
- W1554694346 hasLocation W15546943461 @default.
- W1554694346 hasOpenAccess W1554694346 @default.
- W1554694346 hasPrimaryLocation W15546943461 @default.
- W1554694346 hasRelatedWork W1486068482 @default.
- W1554694346 hasRelatedWork W1970143170 @default.
- W1554694346 hasRelatedWork W2033779771 @default.
- W1554694346 hasRelatedWork W2111216096 @default.
- W1554694346 hasRelatedWork W2213502148 @default.
- W1554694346 hasRelatedWork W2382025684 @default.
- W1554694346 hasRelatedWork W2526591656 @default.
- W1554694346 hasRelatedWork W2583678196 @default.
- W1554694346 hasRelatedWork W2788089218 @default.
- W1554694346 hasRelatedWork W2795974284 @default.
- W1554694346 hasRelatedWork W2950994415 @default.
- W1554694346 hasRelatedWork W2953090036 @default.
- W1554694346 hasRelatedWork W3009357547 @default.
- W1554694346 hasRelatedWork W3102209298 @default.
- W1554694346 hasRelatedWork W3116011807 @default.
- W1554694346 hasRelatedWork W322505271 @default.
- W1554694346 hasRelatedWork W400618262 @default.
- W1554694346 hasRelatedWork W599268284 @default.
- W1554694346 hasRelatedWork W605229544 @default.
- W1554694346 hasRelatedWork W608637858 @default.
- W1554694346 isParatext "false" @default.
- W1554694346 isRetracted "false" @default.
- W1554694346 magId "1554694346" @default.
- W1554694346 workType "article" @default.