Matches in SemOpenAlex for { <https://semopenalex.org/work/W1554769888> ?p ?o ?g. }
- W1554769888 abstract "Most pattern recognition applications within the Geoscience field involve the clustering and classification of remote sensed multispectral data, which basically aims to allocate the right class of ground category to a reflectance or radiance signal. Generally, the complexity of this problem is related to the incorporation of spatial characteristics that are complementary to the nonlinearities of land surface heterogeneity, remote sensing effects and multispectral features. The present chapter describes recent developments in the performance of a kernel method applied to the representation and classification of agricultural land use systems described by multispectral responses. In particular, we focus on the practical applicability of learning machine methods to the task of inducting a relationship between the spectral response of farms land cover to their informational typology from a representative set of instances. Such methodologies are not traditionally used in agricultural studies. Nevertheless, the list of references reviewed here show that its applications have emerged very fast and are leading to simple and theoretically robust classification models. This chapter will cover the following phases: a)learning from instances in agriculture; b)feature extraction of both multispectral and attributive data and; c) kernel supervised classification. The first provides the conceptual foundations and a historical perspective of the field. The second belongs to the unsupervised learning field, which mainly involves the appropriate description of input data in a lower dimensional space. The last is a method based on statistical learning theory, which has been successfully applied to supervised classification problems and to generate models described by implicit functions." @default.
- W1554769888 created "2016-06-24" @default.
- W1554769888 creator A5040343645 @default.
- W1554769888 creator A5050826153 @default.
- W1554769888 creator A5072710531 @default.
- W1554769888 creator A5080601592 @default.
- W1554769888 date "2009-10-01" @default.
- W1554769888 modified "2023-09-26" @default.
- W1554769888 title "Using Kernel Methods in a Learning Machine Approach for Multispectral Data Classification. An Application in Agriculture" @default.
- W1554769888 cites W1480544864 @default.
- W1554769888 cites W1502066431 @default.
- W1554769888 cites W1510073064 @default.
- W1554769888 cites W1526146785 @default.
- W1554769888 cites W1548226549 @default.
- W1554769888 cites W1560724230 @default.
- W1554769888 cites W1563088657 @default.
- W1554769888 cites W1563671628 @default.
- W1554769888 cites W1573234480 @default.
- W1554769888 cites W1582302930 @default.
- W1554769888 cites W1585424903 @default.
- W1554769888 cites W1657213141 @default.
- W1554769888 cites W1663973292 @default.
- W1554769888 cites W179694669 @default.
- W1554769888 cites W184023059 @default.
- W1554769888 cites W1967400946 @default.
- W1554769888 cites W1972923945 @default.
- W1554769888 cites W1973948212 @default.
- W1554769888 cites W1978043179 @default.
- W1554769888 cites W1986280275 @default.
- W1554769888 cites W1998871699 @default.
- W1554769888 cites W1998902551 @default.
- W1554769888 cites W2001619934 @default.
- W1554769888 cites W2005307853 @default.
- W1554769888 cites W2010744265 @default.
- W1554769888 cites W2014158063 @default.
- W1554769888 cites W2016381774 @default.
- W1554769888 cites W2017730203 @default.
- W1554769888 cites W2017992491 @default.
- W1554769888 cites W2031380708 @default.
- W1554769888 cites W2031542570 @default.
- W1554769888 cites W2040870580 @default.
- W1554769888 cites W2048837840 @default.
- W1554769888 cites W2055417373 @default.
- W1554769888 cites W2058887230 @default.
- W1554769888 cites W2063553556 @default.
- W1554769888 cites W2071128523 @default.
- W1554769888 cites W2076227825 @default.
- W1554769888 cites W2078455576 @default.
- W1554769888 cites W2078619499 @default.
- W1554769888 cites W2080136494 @default.
- W1554769888 cites W2081073614 @default.
- W1554769888 cites W2081179181 @default.
- W1554769888 cites W2084502283 @default.
- W1554769888 cites W2086789740 @default.
- W1554769888 cites W2087347434 @default.
- W1554769888 cites W2089245375 @default.
- W1554769888 cites W2095202975 @default.
- W1554769888 cites W2097975007 @default.
- W1554769888 cites W2100294832 @default.
- W1554769888 cites W2105458896 @default.
- W1554769888 cites W2113229145 @default.
- W1554769888 cites W2115080712 @default.
- W1554769888 cites W2119479037 @default.
- W1554769888 cites W2131841144 @default.
- W1554769888 cites W2133671888 @default.
- W1554769888 cites W2136251662 @default.
- W1554769888 cites W2140095548 @default.
- W1554769888 cites W2140785063 @default.
- W1554769888 cites W2147280166 @default.
- W1554769888 cites W2148603752 @default.
- W1554769888 cites W2153534417 @default.
- W1554769888 cites W2156909104 @default.
- W1554769888 cites W2162480849 @default.
- W1554769888 cites W2165551322 @default.
- W1554769888 cites W2171541062 @default.
- W1554769888 cites W2211515362 @default.
- W1554769888 cites W2758522670 @default.
- W1554769888 cites W2799061466 @default.
- W1554769888 cites W3023786531 @default.
- W1554769888 cites W3125972040 @default.
- W1554769888 cites W3135358928 @default.
- W1554769888 cites W52871114 @default.
- W1554769888 cites W91227773 @default.
- W1554769888 cites W1504417276 @default.
- W1554769888 cites W2411898846 @default.
- W1554769888 doi "https://doi.org/10.5772/8307" @default.
- W1554769888 hasPublicationYear "2009" @default.
- W1554769888 type Work @default.
- W1554769888 sameAs 1554769888 @default.
- W1554769888 citedByCount "0" @default.
- W1554769888 crossrefType "book-chapter" @default.
- W1554769888 hasAuthorship W1554769888A5040343645 @default.
- W1554769888 hasAuthorship W1554769888A5050826153 @default.
- W1554769888 hasAuthorship W1554769888A5072710531 @default.
- W1554769888 hasAuthorship W1554769888A5080601592 @default.
- W1554769888 hasBestOaLocation W15547698881 @default.
- W1554769888 hasConcept C104541649 @default.
- W1554769888 hasConcept C114614502 @default.
- W1554769888 hasConcept C119857082 @default.
- W1554769888 hasConcept C122280245 @default.