Matches in SemOpenAlex for { <https://semopenalex.org/work/W1555036782> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W1555036782 abstract "Generally speaking, Docking is most popular and critical issue in this research field, because it contains most important information both Ligands (Drugs) and Receptors (it can be intracellular protein, trans-membrane protein or extracellular protein). However, when the ligand’s information is not sufficient, it needs other calculation strategies to design and “modify” the ligands, and theoretically improve the drug effects, and that is called De Novo Evolution Drug Design. Current methods for structure-based drug design can be divided roughly into two categories. The first category is about “finding” ligands for a given receptor, which is usually referred as database searching. In this case, a large number of potential ligand molecules are screened to find those fitting the binding pocket of the receptor. This method is usually referred as structure-based drug design. The key advantage of database searching is that it saves synthetic effort to obtain new lead compounds. Another category of structure-based drug design methods is about “building” ligands, which is usually referred as receptor-based drug design. In this case, ligand molecules are built up within the constraints of the binding pocket by assembling small pieces in a stepwise manner. These pieces can be either individual atoms or molecular fragments. The key advantage of such a method is that novel structures, not contained in any database, can be suggested. These techniques are raising much excitement to the drug design community. Above two computational methods, the first is called virtual screening by Docking (the drugs are well prepared and need to be screen out the most suitable candidates), and the other is De.Novo Evolution Drug Design (De Novo means “creates” or “building” ligands) [13]. However, when the targeting protein is unclear, or the factors are complicated, QSAR method is implemented to help user solving these problems. Because QSAR method just needs ligands structures and IC50 datasets to unveil an unknown novel drugs. Finally, when both of Ligands and Receptors are unknown, Homology Modeling is the only method for dealing with this problem. By using Homology Modeling, the Receptors 1-D sequences similarities can be used as a tool to reconstruct the 3-D structures." @default.
- W1555036782 created "2016-06-24" @default.
- W1555036782 creator A5033532448 @default.
- W1555036782 date "2012-03-14" @default.
- W1555036782 modified "2023-10-01" @default.
- W1555036782 title "Computational Virtual Screening Towards Designing Novel Anticancer Drugs" @default.
- W1555036782 cites W115580540 @default.
- W1555036782 cites W1977467384 @default.
- W1555036782 cites W1983304433 @default.
- W1555036782 cites W2002503549 @default.
- W1555036782 cites W2009126305 @default.
- W1555036782 cites W2011230643 @default.
- W1555036782 cites W2012084558 @default.
- W1555036782 cites W2012911467 @default.
- W1555036782 cites W2041686943 @default.
- W1555036782 cites W2045336410 @default.
- W1555036782 cites W2049455674 @default.
- W1555036782 cites W2050273205 @default.
- W1555036782 cites W2096729248 @default.
- W1555036782 cites W2140662159 @default.
- W1555036782 cites W2162166182 @default.
- W1555036782 cites W2169238639 @default.
- W1555036782 cites W659454094 @default.
- W1555036782 doi "https://doi.org/10.5772/35610" @default.
- W1555036782 hasPublicationYear "2012" @default.
- W1555036782 type Work @default.
- W1555036782 sameAs 1555036782 @default.
- W1555036782 citedByCount "1" @default.
- W1555036782 countsByYear W15550367822015 @default.
- W1555036782 crossrefType "book-chapter" @default.
- W1555036782 hasAuthorship W1555036782A5033532448 @default.
- W1555036782 hasBestOaLocation W15550367821 @default.
- W1555036782 hasConcept C103697762 @default.
- W1555036782 hasConcept C116569031 @default.
- W1555036782 hasConcept C159110408 @default.
- W1555036782 hasConcept C170493617 @default.
- W1555036782 hasConcept C185592680 @default.
- W1555036782 hasConcept C192071366 @default.
- W1555036782 hasConcept C21951064 @default.
- W1555036782 hasConcept C2780035454 @default.
- W1555036782 hasConcept C41008148 @default.
- W1555036782 hasConcept C41685203 @default.
- W1555036782 hasConcept C55493867 @default.
- W1555036782 hasConcept C60644358 @default.
- W1555036782 hasConcept C70721500 @default.
- W1555036782 hasConcept C71924100 @default.
- W1555036782 hasConcept C74187038 @default.
- W1555036782 hasConcept C86803240 @default.
- W1555036782 hasConcept C98274493 @default.
- W1555036782 hasConceptScore W1555036782C103697762 @default.
- W1555036782 hasConceptScore W1555036782C116569031 @default.
- W1555036782 hasConceptScore W1555036782C159110408 @default.
- W1555036782 hasConceptScore W1555036782C170493617 @default.
- W1555036782 hasConceptScore W1555036782C185592680 @default.
- W1555036782 hasConceptScore W1555036782C192071366 @default.
- W1555036782 hasConceptScore W1555036782C21951064 @default.
- W1555036782 hasConceptScore W1555036782C2780035454 @default.
- W1555036782 hasConceptScore W1555036782C41008148 @default.
- W1555036782 hasConceptScore W1555036782C41685203 @default.
- W1555036782 hasConceptScore W1555036782C55493867 @default.
- W1555036782 hasConceptScore W1555036782C60644358 @default.
- W1555036782 hasConceptScore W1555036782C70721500 @default.
- W1555036782 hasConceptScore W1555036782C71924100 @default.
- W1555036782 hasConceptScore W1555036782C74187038 @default.
- W1555036782 hasConceptScore W1555036782C86803240 @default.
- W1555036782 hasConceptScore W1555036782C98274493 @default.
- W1555036782 hasLocation W15550367821 @default.
- W1555036782 hasLocation W15550367822 @default.
- W1555036782 hasOpenAccess W1555036782 @default.
- W1555036782 hasPrimaryLocation W15550367821 @default.
- W1555036782 hasRelatedWork W133819983 @default.
- W1555036782 hasRelatedWork W134317234 @default.
- W1555036782 hasRelatedWork W1575639801 @default.
- W1555036782 hasRelatedWork W1580512714 @default.
- W1555036782 hasRelatedWork W2002141822 @default.
- W1555036782 hasRelatedWork W2016718423 @default.
- W1555036782 hasRelatedWork W2038212159 @default.
- W1555036782 hasRelatedWork W2075802963 @default.
- W1555036782 hasRelatedWork W2085673005 @default.
- W1555036782 hasRelatedWork W2114563838 @default.
- W1555036782 hasRelatedWork W2151008495 @default.
- W1555036782 hasRelatedWork W2333944999 @default.
- W1555036782 hasRelatedWork W2889325774 @default.
- W1555036782 hasRelatedWork W2940022392 @default.
- W1555036782 hasRelatedWork W2951377248 @default.
- W1555036782 hasRelatedWork W2963637851 @default.
- W1555036782 hasRelatedWork W59259921 @default.
- W1555036782 hasRelatedWork W73217504 @default.
- W1555036782 hasRelatedWork W999144792 @default.
- W1555036782 hasRelatedWork W2567528589 @default.
- W1555036782 isParatext "false" @default.
- W1555036782 isRetracted "false" @default.
- W1555036782 magId "1555036782" @default.
- W1555036782 workType "book-chapter" @default.