Matches in SemOpenAlex for { <https://semopenalex.org/work/W1555486954> ?p ?o ?g. }
- W1555486954 endingPage "116" @default.
- W1555486954 startingPage "94" @default.
- W1555486954 abstract "Periodontology 2000Volume 52, Issue 1 p. 94-116 Metal uptake in host–pathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms Janina P. Lewis, Janina P. LewisSearch for more papers by this author Janina P. Lewis, Janina P. LewisSearch for more papers by this author First published: 11 December 2009 https://doi.org/10.1111/j.1600-0757.2009.00329.xCitations: 62Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References 1 Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005: 43: 5721– 5732. 2 Aduse-Opoku J, Slaney JM, Rangarajan M, Muir J, Young KA, Curtis MA. The Tla protein of Porphyromonas gingivalis W50: a homolog of the RI protease precursor (PrpRI) is an outer membrane receptor required for growth on low levels of hemin. J Bacteriol 1997: 179: 4778– 4788. 3 Agranoff D, Monahan IM, Mangan JA, Butcher PD, Krishna S. Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family. J Exp Med 1999: 190: 717– 724. 4 Ainamo J, Ainamo A. Risk assessment of recurrence of disease during supportive periodontal care. Epidemiological considerations. J Clin Periodontol 1996: 23: 232– 239. 5 Al-Qutub MN, Braham PH, Karimi-Naser LM, Liu X, Genco CA, Darveau RP. Hemin-dependent modulation of the lipid A structure of Porphyromonas gingivalis lipopolysaccharide. Infect Immun 2006: 74: 4474– 4485. 6 Anaya-Bergman C, He J, Jones K, Miyazaki H, Yeudall WA, Lewis JP. The Porphyromonas gingivalis ferrous iron transporter FeoB1 influences sensitivity to oxidative stress. Infect Immun [Published ahead of print on 16 November 2009]. 7 Anaya-Bergman C, Plata K, Lewis JP. Role of P. gingivalis hmu locus in hemin uptake. 2009: Unpublished. 8 Anderson JE, Sparling PF, Cornelissen CN. Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J Bacteriol 1994: 176: 3162– 3170. 9 Andrews SC, Robinson AK, Rodriguez-Quinones F. Bacterial iron homeostasis. FEMS Microbiol Rev 2003: 27: 215– 237. 10 Bainbridge BW, Karimi-Naser L, Reife R, Blethen F, Ernst RK, Darveau RP. Acyl chain specificity of the acyltransferases LpxA and LpxD and substrate availability contribute to lipid A fatty acid heterogeneity in Porphyromonas gingivalis. J Bacteriol 2008: 190: 4549– 4558. 11 Beaven GH, Chen S-H, D’Albis A, Gratzer WB. A spectroscopic study of the haemin–human-serum-albumin system. Eur J Biochem 1974: 41: 539– 546. 12 Boukhalfa H, Crumbliss AL. Chemical aspects of siderophore mediated iron transport. Biometals 2002: 15: 325– 339. 13 Boyer E, Bergevin I, Malo D, Gros P, Cellier MF. Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar typhimurium. Infect Immun 2002: 70: 6032– 6042. 14 Bramanti TE, Holt SC. Effect of porphyrins and host iron transport proteins on outer membrane protein expression in Porphyromonas (Bacteroides) gingivalis: identification of a novel 26 kDa hemin-repressible surface protein. Microb Pathog 1992: 13: 61– 73. 15 Bramanti TE, Holt SC. Hemin uptake in Porphyromonas gingivalis: Omp26 is a hemin-binding surface protein. J Bacteriol 1993: 175: 7413– 7420. 16 Braun V, Killmann H. Bacterial solutions to the iron-supply problem. Trends Biochem Sci 1999: 24: 104– 109. 17 Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Porphyromonas gingivalis gingipains: the molecular teeth of a microbial vampire. Curr Protein Pept Sci 2003: 4: 409– 426. 18 Canonne-Hergaux F, Gruenheid S, Govoni G, Gros P. The Nramp1 protein and its role in resistance to infection and macrophage function. Proc Assoc Am Physicians 1999: 111: 283– 289. 19 Capestany CA, Kuboniwa M, Jung IY, Park Y, Tribble GD, Lamont RJ. Role of the Porphyromonas gingivalis InlJ protein in homotypic and heterotypic biofilm development. Infect Immun 2006: 74: 3002– 3005. 20 Choi JI, Nakagawa T, Yamada S, Takazoe I, Okuda K. Clinical, microbiological and immunological studies on recurrent periodontal disease. J Clin Periodontol 1990: 17: 426– 434. 21 Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, Socransky SS, Hasturk H, Van Dyke TE, Dewhirst F, Paster BJ. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol 2009: 80: 1421– 1432. 22 Colombo AP, Haffajee AD, Dewhirst FE, Paster BJ, Smith CM, Cugini MA, Socransky SS. Clinical and microbiological features of refractory periodontitis subjects. J Clin Periodontol 1998: 25: 169– 180. 23 Cornelissen CN. Transferrin-iron uptake by Gram-negative bacteria. Front Biosci 2003: 8: d836– d847. 24 Cornelissen CN, Biswas GD, Tsai J, Paruchuri DK, Thompson SA, Sparling PF. Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors. J Bacteriol 1992: 174: 5788– 5797. 25 Crosa JH. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 1989: 53: 517– 530. 26 Curtis MA. Analysis of the protease and adhesin domains of the PrpRI of Porphyromonas gingivalis. J Periodontal Res 1997: 32: 133– 139. 27 Curtis MA, Aduse-Opoku J, Rangarajan M. Cysteine proteases of Porphyromonas gingivalis. Crit Rev Oral Biol Med 2001: 12: 192– 216. 28 Curtis MA, Hanley SA, Aduse-Opoku J. The rag locus of Porphyromonas gingivalis: a novel pathogenicity island. J Periodontal Res 1999: 34: 400– 405. 29 D’Mello RA, Langford PR, Kroll JS. Role of bacterial Mn-cofactored superoxide dismutase in oxidative stress responses, nasopharyngeal colonization, and sustained bacteremia caused by Haemophilus influenzae type b. Infect Immun 1997: 65: 2700– 2706. 30 Dashper SG, Ang CS, Veith PD, Mitchell HL, Lo AW, Seers CA, Walsh KA, Slakeski N, Chen D, Lissel JP, Butler CA, O’Brien-Simpson NM, Barr IG, Reynolds EC. Response of Porphyromonas gingivalis to heme limitation in continuous culture. J Bacteriol 2009: 191: 1044– 1055. 31 Dashper SG, Butler CA, Lissel JP, Paolini RA, Hoffmann B, Veith PD, O’Brien-Simpson NM, Snelgrove SL, Tsiros JT, Reynolds EC. A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation. J Biol Chem 2005: 280: 28095– 28102. 32 Dashper SG, Hendtlass A, Slakeski N, Jackson C, Cross KJ, Brownfield L, Hamilton R, Barr I, Reynolds EC. Characterization of a novel outer membrane hemin-binding protein of Porphyromonas gingivalis. J Bacteriol 2000: 182: 6456– 6462. 33 DeCarlo AA, Paramaesvaran M, Yun PL, Collyer C, Hunter N. Porphyrin-mediated binding to hemoglobin by the HA2 domain of cysteine proteinases (gingipains) and hemagglutinins from the periodontal pathogen Porphyromonas gingivalis. J Bacteriol 1999: 181: 3784– 3791. 34 Deshpande RG, Khan MB, Genco CA. Invasion of aortic and heart endothelial cells by Porphyromonas gingivalis. Infect Immun 1998: 66: 5337– 5343. 35 Diaz PI, Slakeski N, Reynolds EC, Morona R, Rogers AH, Kolenbrander PE. Role of oxyR in the oral anaerobe Porphyromonas gingivalis. J Bacteriol 2006: 188: 2454– 2462. 36 Diaz PI, Zilm PS, Wasinger V, Corthals GL, Rogers AH. Studies on NADH oxidase and alkyl hydroperoxide reductase produced by Porphyromonas gingivalis. Oral Microbiol Immunol 2004: 19: 137– 143. 37 Doherty CP. Host–pathogen interactions: the role of iron. J Nutr 2007: 137: 1341– 1344. 38 Dorn BR, Dunn WA Jr, Progulske-Fox A. Invasion of human coronary artery cells by periodontal pathogens. Infect Immun 1999: 67: 5792– 5798. 39 Dorn BR, Leung KL, Progulske-Fox A. Invasion of human oral epithelial cells by Prevotella intermedia. Infect Immun 1998: 66: 6054– 6057. 40 Escolar L, Perez-Martin J, De Lorenzo V. Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 1999: 181: 6223– 6229. 41 Ezzo PJ, Cutler CW. Microorganisms as risk indicators for periodontal disease. Periodontol 2000 2003: 32: 24– 35. 42 Fujimura S, Hirai K, Shibata Y, Nakayama K, Nakamura T. Comparative properties of envelope-associated arginine-gingipains and lysine-gingipain of Porphyromonas gingivalis. FEMS Microbiol Lett 1998: 163: 173– 179. 43 Fujimura Y, Hotokezaka H, Ohara N, Naito M, Sakai E, Yoshimura M, Narita Y, Kitaura H, Yoshida N, Nakayama K. The hemoglobin receptor protein of Porphyromonas gingivalis inhibits receptor activator NF-κB ligand-induced osteoclastogenesis from bone marrow macrophages. Infect Immun 2006: 74: 2544– 2551. 44 Garcia RI, Henshaw MM, Krall EA. Relationship between periodontal disease and systemic health. Periodontol 2000 2001: 25: 21– 36. 45 Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 2004: 58: 303– 328. 46 Gruenheid S, Canonne-Hergaux F, Gauthier S, Hackam DJ, Grinstein S, Gros P. The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med 1999: 189: 831– 841. 47 Haffajee AD, Socransky SS. Microbial etiological agents of destructive periodontal diseases. Periodontol 2000 1994: 5: 78– 111. 48 Han N, Whitlock J, Progulske-Fox A. The hemagglutinin gene A (hagA) of Porphyromonas gingivalis 381 contains four large, contiguous, direct repeats. Infect Immun 1996: 64: 4000– 4007. 49 Hantke K. Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 1981: 182: 288– 292. 50 Hantke K. Iron and metal regulation in bacteria. Curr Opin Microbiol 2001: 4: 172– 177. 51 Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000: 71: 1554– 1560. 52 He J, Miyazaki H, Anaya C, Yu F, Yeudall WA, Lewis JP. Role of Porphyromonas gingivalis FeoB2 in metal uptake and oxidative stress protection. Infect Immun 2006: 74: 4214– 4223. 53 Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell 2004: 117: 285– 297. 54 Hill PJ, Cockayne A, Landers P, Morrissey JA, Sims CM, Williams P. SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. Infect Immun 1998: 66: 4123– 4129. 55 Hrkal Z, Vodrazka Z, Kalousek I. Transfer of heme from ferrihemoglobin and ferrihemoglobin isolated chains to hemopexin. Eur J Biochem 1974: 43: 73– 78. 56 Hwang PK, Greer J. Interaction between hemoglobin subunits in the hemoglobin·haptoglobin complex. J Biol Chem 1980: 255: 3038– 3041. 57 Ikeda JS, Janakiraman A, Kehres DG, Maguire ME, Slauch JM. Transcriptional regulation of sitABCD of Salmonella enterica serovar typhimurium by MntR and Fur. J Bacteriol 2005: 187: 912– 922. 58 Imamura T. The role of gingipains in the pathogenesis of periodontal disease. J Periodontol 2003: 74: 111– 118. 59 Jakubovics NS, Jenkinson HF. Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 2001: 147: 1709– 1718. 60 James CE, Hasegawa Y, Park Y, Yeung V, Tribble GD, Kuboniwa M, Demuth DR, Lamont RJ. LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis. Infect Immun 2006: 74: 3834– 3844. 61 Kammler M, Schon C, Hantke K. Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 1993: 175: 6212– 6219. 62 Karunakaran T, Madden T, Kuramitsu H. Isolation and characterization of a hemin-regulated gene, hemR, from Porphyromonas gingivalis. J Bacteriol 1997: 179: 1898– 1908. 63 Kehres DG, Janakiraman A, Slauch JM, Maguire ME. Regulation of Salmonella enterica serovar typhimurium mntH transcription by H2O2, Fe2+, and Mn2+. J Bacteriol 2002: 184: 3151– 3158. 64 Kehres DG, Maguire ME. Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 2003: 27: 263– 290. 65 Kesavalu L, Holt SC, Ebersole JL. In vitro environmental regulation of Porphyromonas gingivalis growth and virulence. Oral Microbiol Immunol 2003: 18: 226– 233. 66 Khun HH, Deved V, Wong H, Lee BC. fbpABC gene cluster in Neisseria meningitidis is transcribed as an operon. Infect Immun 2000: 68: 7166– 7171. 67 Kim S, Anaya-Bergman C, Jones K, Lewis JP. Role of intergenic regions in Porphyromonas gingivalis gene regulation. 2009: Unpublished. 68 Kim SJ, Chu L, Holt SC. Isolation and characterization of a hemin-binding cell envelope protein from Porphyromonas gingivalis. Microb Pathog 1996: 21: 65– 70. 69 Klimpel KW, Clark VL. The RNA polymerases of Porphyromonas gingivalis and Fusobacterium nucleatum are unrelated to the RNA polymerase of Escherichia coli. J Dent Res 1990: 69: 1567– 1572. 70 Kuboniwa M, Hasegawa Y, Mao S, Shizukuishi S, Amano A, Lamont RJ, Yilmaz O. P. gingivalis accelerates gingival epithelial cell progression through the cell cycle. Microbes Infect 2008: 10: 122– 128. 71 Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 1998: 62: 1244– 1263. 72 Larsen RA, Myers PS, Skare JT, Seachord CL, Darveau RP, Postle K. Identification of TonB homologs in the family Enterobacteriaceae and evidence for conservation of TonB-dependent energy transduction complexes. J Bacteriol 1996: 178: 1363– 1373. 73 Lee BC. Quelling the red menace: haem capture by bacteria. Mol Microbiol 1995: 18: 383– 390. 74 Legrain M, Mazarin V, Irwin SW, Bouchon B, Quentin-Millet MJ, Jacobs E, Schryvers AB. Cloning and characterization of Neisseria meningitidis genes encoding the transferrin-binding proteins Tbp1 and Tbp2. Gene 1993: 130: 73– 80. 75 Lepine G, Progulske-Fox A. Duplication and differential expression of hemagglutinin genes in Porphyromonas gingivalis. Oral Microbiol Immunol 1996: 11: 65– 78. 76 Letain TE, Postle K. TonB protein appears to transduce energy by shuttling between the cytoplasmic membrane and the outer membrane in Escherichia coli. Mol Microbiol 1997: 24: 271– 283. 77 Lewis JP, Anaya-Bergman C. Regulation of Porphyromonas gingivalis metal uptake loci. 2009:Unpublished. 78 Lewis JP, Anaya-Bergman C. The Porphyromonas gingivalis OxyR regulon. 2009:Unpublished. 79 Lewis JP, Anaya-Bergman C, Rosato A. Iron-dependent transcriptome of Porphyromonas gingivalis W83. 2009: Unpublished. 80 Lewis JP, Arg X, Lys X. Proteolytic activity of P. gingivalis. 2009: Unpublished. 81 Lewis JP, Dawson JA, Hannis JC, Muddiman D, Macrina FL. Hemoglobinase activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis W83. J Bacteriol 1999: 181: 4905– 4913. 82 Lewis JP, He J, Yanamandra S, Anaya-Bergman C. The Porphyromonas gingivalis Reg regulon. 2009:Unpublished. 83 Lewis JP, Iyer D, Anaya-Bergman C. Adaptation of Porphyromonas gingivalis to microaerophilic conditions involves increased consumption of formate and reduced accumulation of lactate. Microbiology 2009: 155: 3758– 3774. 84 Lewis JP, Plata K, Yu F, Rosato A, Anaya C. Transcriptional organization, regulation and role of the Porphyromonas gingivalis W83 hmu haemin-uptake locus. Microbiology 2006: 152: 3367– 3382. 85 Lewis LA, Rohde K, Gipson M, Behrens B, Gray E, Toth SI, Roe BA, Dyer DW. Identification and molecular analysis of lbpBA, which encodes the two-component meningococcal lactoferrin receptor. Infect Immun 1998: 66: 3017– 3023. 86 Lieser SA, Davis TC, Helmann JD, Cohen SM. DNA-binding and oligomerization studies of the manganese(II) metalloregulatory protein MntR from Bacillus subtilis. Biochemistry 2003: 42: 12634– 12642. 87 Liu X, Olczak T, Guo HC, Dixon DW, Genco CA. Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR. Infect Immun 2006: 74: 1222– 1232. 88 Liu X, Sroka A, Potempa J, Genco CA. Coordinate expression of the Porphyromonas gingivalis lysine-specific gingipain proteinase, Kgp, arginine-specific gingipain proteinase, RgpA, and the heme/hemoglobin receptor, HmuR. Biol Chem 2004: 385: 1049– 1057. 89 Macy JM, Probst I. The biology of gastrointestinal Bacteroides. Annu Rev Microbiol 1979: 33: 561– 594. 90 Marsh PD, McDermid AS, McKee AS, Baskerville A. The effect of growth rate and haemin on the virulence and proteolytic activity of Porphyromonas gingivalis W50. Microbiology 1994: 140: 861– 865. 91 Masse E, Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 2002: 99: 4620– 4625. 92 Masse E, Salvail H, Desnoyers G, Arguin M. Small RNAs controlling iron metabolism. Curr Opin Microbiol 2007: 10: 140– 145. 93 Matto J, Saarela M, Alaluusua S, Oja V, Jousimies-Somer H, Asikainen S. Detection of Porphyromonas gingivalis from saliva by PCR by using a simple sample-processing method. J Clin Microbiol 1998: 36: 157– 160. 94 McKee AS, McDermid AS, Baskerville A, Dowsett AB, Ellwood DC, Marsh PD. Effect of hemin on the physiology and virulence of Bacteroides gingivalis W50. Infect Immun 1986: 52: 349– 355. 95 Mercier A, Pelletier B, Labbe S. A transcription factor cascade involving Fep1 and the CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 2006: 5: 1866– 1881. 96 Mihara J, Holt SC. Purification and characterization of fibroblast-activating factor isolated from Porphyromonas gingivalis W50. Infect Immun 1993: 61: 588– 595. 97 Mihara J, Miyazawa Y, Holt SC. Modulation of growth and function of human gingival fibroblasts by fibroblast-activating factor derived from Porphyromonas gingivalis W50. Infect Immun 1993: 61: 596– 601. 98 Mihara J, Yoneda T, Holt SC. Role of Porphyromonas gingivalis-derived fibroblast-activating factor in bone resorption. Infect Immun 1993: 61: 3562– 3564. 99 Moore WE, Moore LH, Ranney RR, Smibert RM, Burmeister JA, Schenkein HA. The microflora of periodontal sites showing active destructive progression. J Clin Periodontol 1991: 18: 729– 739. 100 Mustapha IZ, Debrey S, Oladubu M, Ugarte R. Markers of systemic bacterial exposure in periodontal disease and cardiovascular disease risk: a systematic review and meta-analysis. J Periodontol 2007: 78: 2289– 2302. 101 Nakayama K, Ratnayake DB, Tsukuba T, Kadowaki T, Yamamoto K, Fujimura S. Haemoglobin receptor protein is intragenically encoded by the cysteine proteinase-encoding genes and the haemagglutinin-encoding gene of Porphyromonas gingivalis. Mol Microbiol 1998: 27: 51– 61. 102 Nelson KE, Fleischmann RD, DeBoy RT, Paulsen IT, Fouts DE, Eisen JA, Daugherty SC, Dodson RJ, Durkin AS, Gwinn M, Haft DH, Kolonay JF, Nelson WC, Mason T, Tallon L, Gray J, Granger D, Tettelin H, Dong H, Galvin JL, Duncan MJ, Dewhirst FE, Fraser CM. Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol 2003: 185: 5591– 5601. 103 Okamoto K, Nakayama K, Kadowaki T, Abe N, Ratnayake DB, Yamamoto K. Involvement of a lysine-specific cysteine proteinase in hemoglobin adsorption and heme accumulation by Porphyromonas gingivalis. J Biol Chem 1998: 273: 21225– 21231. 104 Olczak T, Dixon DW, Genco CA. Binding specificity of the Porphyromonas gingivalis heme and hemoglobin receptor HmuR, gingipain K, and gingipain R1 for heme, porphyrins, and metalloporphyrins. J Bacteriol 2001: 183: 5599– 5608. 105 Olczak T, Simpson W, Liu X, Genco CA. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 2005: 29: 119– 144. 106 Olczak T, Siudeja K, Olczak M. Purification and initial characterization of a novel Porphyromonas gingivalis HmuY protein expressed in Escherichia coli and insect cells. Protein Expr Purif 2006: 49: 299– 306. 107 Olczak T, Sroka A, Potempa J, Olczak M. Porphyromonas gingivalis HmuY and HmuR: further characterization of a novel mechanism of heme utilization. Arch Microbiol 2008: 189: 197– 210. 108 Otto BR, Verweij-van Vught AM, MacLaren DM. Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol 1992: 18: 217– 233. 109 Paramaesvaran M, Nguyen KA, Caldon E, McDonald JA, Najdi S, Gonzaga G, Langley DB, DeCarlo A, Crossley MJ, Hunter N, Collyer CA. Porphyrin-mediated cell surface heme capture from hemoglobin by Porphyromonas gingivalis. J Bacteriol 2003: 185: 2528– 2537. 110 Park Y, Xie H, Lamont RJ. Transcriptional organization of the Porphyromonas gingivalis fimA locus. FEMS Microbiol Lett 2007: 273: 103– 108. 111 Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE. Bacterial diversity in human subgingival plaque. J Bacteriol 2001: 183: 3770– 3783. 112 Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000 2006: 42: 80– 87. 113 Pike RN, Potempa J, McGraw W, Coetzer TH, Travis J. Characterization of the binding activities of proteinase–adhesin complexes from Porphyromonas gingivalis. J Bacteriol 1996: 178: 2876– 2882. 114 Polyzos NP, Polyzos IP, Mauri D, Tzioras S, Tsappi M, Cortinovis I, Casazza G. Effect of periodontal disease treatment during pregnancy on preterm birth incidence: a metaanalysis of randomized trials. Am J Obstet Gynecol 2009: 200: 225– 232. 115 Poole K, McKay GA. Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci 2003: 8: d661– d686. 116 Progulske-Fox A, Tumwasorn S, Holt SC. The expression and function of a Bacteroides gingivalis hemagglutinin gene in Escherichia coli. Oral Microbiol Immunol 1989: 4: 121– 131. 117 Progulske-Fox A, Tumwasorn S, Lepine G, Whitlock J, Savett D, Ferretti JJ, Banas JA. The cloning, expression and sequence analysis of a second Porphyromonas gingivalis gene that codes for a protein involved in hemagglutination. Oral Microbiol Immunol 1995: 10: 311– 318. 118 Ratnayake DB, Wai SN, Shi Y, Amako K, Nakayama H, Nakayama K. Ferritin from the obligate anaerobe Porphyromonas gingivalis: purification, gene cloning and mutant studies. Microbiology 2000: 146: 1119– 1127. 119 Reife RA, Coats SR, AlQutub M, Dixon DM, Braham PA, Billharz RJ, Howald WN, Darveau RP. Porphyromonas gingivalis lipopolysaccharide lipid A heterogeneity: differential activities of tetra- and penta-acylated lipid A structures on E-selectin expression and TLR4 recognition. Cell Microbiol 2006: 8: 857– 868. 120 Renvert S, Dahlen G, Wikstrom M. Treatment of periodontal disease based on microbiological diagnosis. Relation between microbiological and clinical parameters during 5 years. J Periodontol 1996: 67: 562– 571. 121 Robey M, Cianciotto NP. Legionella pneumophila feoAB promotes ferrous iron uptake and intracellular infection. Infect Immun 2002: 70: 5659– 5669. 122 Ronpirin C, Jerse AE, Cornelissen CN. Gonococcal genes encoding transferrin-binding proteins A and B are arranged in a bicistronic operon but are subject to differential expression. Infect Immun 2001: 69: 6336– 6347. 123 Roper JM, Raux E, Brindley AA, Schubert HL, Gharbia SE, Shah HN, Warren MJ. The enigma of cobalamin (vitamin B12) biosynthesis in Porphyromonas gingivalis. Identification and characterization of a functional corrin pathway. J Biol Chem 2000: 275: 40316– 40323. 124 Ryu SY, Jeong KS, Kang BN, Park SJ, Yoon WK, Kim SH, Kim TH. Modulation of transferrin synthesis, transferrin receptor expression, iNOS expression and NO production in mouse macrophages by cytokines, either alone or in combination. Anticancer Res 2000: 20: 3331– 3338. 125 Sato K, Kido N, Murakami Y, Hoover CI, Nakayama K, Yoshimura F. Lipopolysaccharide biosynthesis-related genes are required for colony pigmentation of Porphyromonas gingivalis. Microbiology 2009: 155: 1282– 1293. 126 Scannapieco FA, Bush RB, Paju S. Associations between periodontal disease and risk for atherosclerosis, cardiovascular disease, and stroke. A systematic review. Ann Periodontol 2003: 8: 38– 53. 127 Scannapieco FA, Bush RB, Paju S. Periodontal disease as a risk factor for adverse pregnancy outcomes. A systematic review. Ann Periodontol 2003: 8: 70– 78. 128 Schaible UE, Kaufmann SH. Iron and microbial infection. Nat Rev Microbiol 2004: 2: 946– 953. 129 Schifferle RE, Shostad SA, BayersThering MT, Dyer DW, Neiders ME. Effect of protoporphyrin IX limitation on Porphyromonas gingivalis. J Endod 1996: 22: 352– 355. 130 Schmitt MP, Twiddy EM, Holmes RK. Purification and characterization of the diphtheria toxin repressor. Proc Natl Acad Sci USA 1992: 89: 7576– 7580. 131 Shi Y, Ratnayake DB, Okamoto K, Abe N, Yamamoto K, Nakayama K. Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Construction of mutants with a combination of rgpA, rgpB, kgp, and hagA. J Biol Chem 1999: 274: 17955– 17960. 132 Shiloah J, Patters MR. Repopulation of periodontal pockets by microbial pathogens in the absence of supportive therapy. J Periodontol 1996: 67: 130– 139. 133 Shizukuishi S, Tazaki K, Inoshita E, Kataoka K, Hanioka T, Amano A. Effect of concentration of compounds containing iron on the growth of Porphyromonas gingivalis. FEMS Microbiol Lett 1995: 131: 313– 317. 134 Simpson W, Olczak T, Genco CA. Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. J Bacteriol 2000: 182: 5737– 5748. 135 Simpson W, Olczak T, Genco CA. Lysine-specific gingipain K and heme/hemoglobin receptor HmuR are involved in heme utilization in Porphyromonas gingivalis. Acta Biochim Pol 2004: 51: 253– 262. 136 Skare JT, Ahmer BM, Seachord CL, Darveau RP, Postle K. Energy transduction between membranes. TonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FepA. J Biol Chem 1993: 268: 16302– 16308. 137 Slakeski N, Dashper SG, Cook P, Poon C, Moore C, Reynolds EC. A Porphyromonas gingivalis genetic locus encoding a heme transport system. Oral Microbiol Immunol 2000: 15: 388– 392. 138 Smalley JW, Birss AJ. Albumin and hemalbumin degradation by Porphyromonas gingivalis. Oral Microbiol Immunol 1997: 12: 254– 258. 139 Smalley JW, Birss AJ, McKee AS, Marsh PD. Haemin-restriction influences haemin-binding, haemagglutination and protease activity of cells and extracellular membrane vesicles of Porphyromonas gingivalis W50. FEMS Microbiol Lett 1991: 69: 63– 67. 140 Smalley JW, Birss AJ, Silver J. The periodontal pathogen Porphyromonas gingivalis harnesses the chemistry of the mu-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide. FEMS Microbiol Lett 2000: 183: 159– 164. 141 Smalley JW, Birss AJ, Szmigielski B, Potempa J. The HA2 haemagglutinin domain of the lysine-specific gingipain (Kgp) of Porphyromonas gingivalis promotes micro-oxo bishaem formation from monomeric iron(III) protoporphyrin IX. Microbiology 2006: 152: 1839– 1845. 142 Smalley JW, Birss AJ, Szmigielski B, Potempa J. Sequential action of R- and K-specific gingipains of Porphyromonas gingivalis in the generation of the haem-containing pigment from oxyhaemoglobin. Arch Biochem Biophys 2007: 465: 44– 49. 143 Smalley JW, Birss AJ, Szmigielski B, Potempa J. Mechanism of methaemoglobin breakdown by the lysine-specific gingipain of the periodontal pathogen Porphyromonas gingivalis. Biol Chem 2008: 389: 1235– 1238. 144 Smalley JW, Silver J, Marsh PJ, Birss AJ. The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the mu-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism. Biochem J 1998: 331: 681– 685. 145 Smalley JW, Thomas MF, Birss AJ, Withnall R, Silver J. A combination of both arginine- and lysine-specific gingipain activity of Porphyromonas gingivalis is necessary for the generation of the micro-oxo bishaem-containing pigment from haemoglobin. Biochem J 2004: 379: 833– 840. 146 Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998: 25: 134– 144. 147 Sroka A, Sztukowska M, Potempa J, Travis J, Genco CA. Degradation of host heme proteins by lysine- and arginine-specific cysteine proteinases (gingipains) of Porphyromonas gingivalis. J Bacteriol 2001: 183: 5609– 5616. 148 Stojiljkovic I, Hantke K. Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica. Mol Microbiol 1994: 13: 719– 732. 149 Storz G, Tartaglia LA, Ames BN. The OxyR regulon. Antonie Van Leeuwenhoek 1990: 58: 157– 161. 150 Supek F, Supekova L, Nelson H, Nelson N. Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function. J Exp Biol 1997: 200: 321– 330. 151 Sztukowska M, Bugno M, Potempa J, Travis J, Kurtz DM Jr. Role of rubrerythrin in the oxidative stress response of Porphyromonas gingivalis. Mol Microbiol 2002: 44: 479– 488. 152 Tao X, Schiering N, Zeng HY, Ringe D, Murphy JR. Iron, DtxR, and the regulation of diphtheria toxin expression. Mol Microbiol 1994: 14: 191– 197. 153 Tazaki K, Inoshita E, Amano A, Hanioka T, Tamagawa H, Shizukuishi S. Interaction of Porphyromonas gingivalis with transferrin. FEMS Microbiol Lett 1995: 131: 161– 166. 154 Thompson JM, Jones HA, Perry RD. Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization. Infect Immun 1999: 67: 3879– 3892. 155 Tonetti MS. Periodontitis and risk for atherosclerosis: an update on intervention trials. J Clin Periodontol 2009: 36(Suppl. 10): 15– 19. 156 Touati D. Iron and oxidative stress in bacteria. Arch Biochem Biophys 2000: 373: 1– 6. 157 Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 2004: 122: 339– 352. 158 Tseng HJ, Srikhanta Y, McEwan AG, Jennings MP. Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity. Mol Microbiol 2001: 40: 1175– 1186. 159 Tsolis RM, Baumler AJ, Heffron F, Stojiljkovic I. Contribution of TonB- and Feo-mediated iron uptake to growth of Salmonella typhimurium in the mouse. Infect Immun 1996: 64: 4549– 4556. 160 U S, Harper F, Curtis MA. Haemin inhibits the trypsin-like enzyme activity of Porphyromonas gingivalis W83. FEMS Microbiol Lett 1990: 60: 169– 172. 161 Ueshima J, Shoji M, Ratnayake DB, Abe K, Yoshida S, Yamamoto K, Nakayama K. Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis. Infect Immun 2003: 71: 1170– 1178. 162 Velayudhan J, Hughes NJ, McColm AA, Bagshaw J, Clayton CL, Andrews SC, Kelly DJ. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol 2000: 37: 274– 286. 163 Visca P, Leoni L, Wilson MJ, Lamont IL. Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 2002: 45: 1177– 1190. 164 Wandersman C, Stojiljkovic I. Bacterial heme sources: the role of heme, hemoprotein receptors and hemophores. Curr Opin Microbiol 2000: 3: 215– 220. 165 Weinberg ED. Iron availability and infection. Biochim Biophys Acta 2009: 1790: 600– 605. 166 Wojtowicz H, Guevara T, Tallant C, Olczak M, Sroka A, Potempa J, Sola M, Olczak T, Gomis-Ruth FX. Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis. PLoS Pathog 2009: 5: e1000419. 167 Wyckoff EE, Boulette ML, Payne SM. Genetics and environmental regulation of Shigella iron transport systems. Biometals 2009: 22: 43– 51. 168 Wyckoff EE, Duncan D, Torres AG, Mills M, Maase K, Payne SM. Structure of the Shigella dysenteriae haem transport locus and its phylogenetic distribution in enteric bacteria. Mol Microbiol 1998: 28: 1139– 1152. 169 Xia Q, Wang T, Taub F, Park Y, Capestany CA, Lamont RJ, Hackett M. Quantitative proteomics of intracellular Porphyromonas gingivalis. Proteomics 2007: 7: 4323– 4337. 170 Xie H, Lamont RJ. Promoter architecture of the Porphyromonas gingivalis fimbrillin gene. Infect Immun 1999: 67: 3227– 3235. 171 Yesilkaya H, Kadioglu A, Gingles N, Alexander JE, Mitchell TJ, Andrew PW. Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infect Immun 2000: 68: 2819– 2826. 172 Yilmaz O. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay. Microbiology 2008: 154: 2897– 2903. 173 Zaharik ML, Finlay BB. Mn2+ and bacterial pathogenesis. Front Biosci 2004: 9: 1035– 1042. 174 Zhang P, Martin M, Michalek SM, Katz J. Role of mitogen-activated protein kinases and NF-κB in the regulation of proinflammatory and anti-inflammatory cytokines by Porphyromonas gingivalis hemagglutinin B. Infect Immun 2005: 73: 3990– 3998. Citing Literature Volume52, Issue1February 2010Pages 94-116 ReferencesRelatedInformation" @default.
- W1555486954 created "2016-06-24" @default.
- W1555486954 creator A5001008344 @default.
- W1555486954 date "2010-02-01" @default.
- W1555486954 modified "2023-10-17" @default.
- W1555486954 title "Metal uptake in hostâpathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms" @default.
- W1555486954 cites W1482838080 @default.
- W1555486954 cites W1510512286 @default.
- W1555486954 cites W1515750364 @default.
- W1555486954 cites W1539111427 @default.
- W1555486954 cites W1552535509 @default.
- W1555486954 cites W1568912715 @default.
- W1555486954 cites W1578241902 @default.
- W1555486954 cites W1606248785 @default.
- W1555486954 cites W1657518708 @default.
- W1555486954 cites W1844387272 @default.
- W1555486954 cites W1902058761 @default.
- W1555486954 cites W1934248043 @default.
- W1555486954 cites W1965133162 @default.
- W1555486954 cites W1965423099 @default.
- W1555486954 cites W1965600386 @default.
- W1555486954 cites W1965865579 @default.
- W1555486954 cites W1968162299 @default.
- W1555486954 cites W1970063271 @default.
- W1555486954 cites W1971613781 @default.
- W1555486954 cites W1973376143 @default.
- W1555486954 cites W1975678414 @default.
- W1555486954 cites W1975781920 @default.
- W1555486954 cites W1975910938 @default.
- W1555486954 cites W1976250962 @default.
- W1555486954 cites W1981925648 @default.
- W1555486954 cites W1983050243 @default.
- W1555486954 cites W1983077597 @default.
- W1555486954 cites W1983095597 @default.
- W1555486954 cites W1991825361 @default.
- W1555486954 cites W1993940688 @default.
- W1555486954 cites W2004697275 @default.
- W1555486954 cites W2005063625 @default.
- W1555486954 cites W2007503375 @default.
- W1555486954 cites W2010866564 @default.
- W1555486954 cites W2011165460 @default.
- W1555486954 cites W2013322021 @default.
- W1555486954 cites W2014381409 @default.
- W1555486954 cites W2014723793 @default.
- W1555486954 cites W2016755888 @default.
- W1555486954 cites W2019094601 @default.
- W1555486954 cites W2019600378 @default.
- W1555486954 cites W2021497905 @default.
- W1555486954 cites W2024319251 @default.
- W1555486954 cites W2026849306 @default.
- W1555486954 cites W2026856977 @default.
- W1555486954 cites W2027384372 @default.
- W1555486954 cites W2027484984 @default.
- W1555486954 cites W2031611989 @default.
- W1555486954 cites W2032756932 @default.
- W1555486954 cites W2033211733 @default.
- W1555486954 cites W2034349300 @default.
- W1555486954 cites W2036205382 @default.
- W1555486954 cites W2037078341 @default.
- W1555486954 cites W2038374897 @default.
- W1555486954 cites W2038804641 @default.
- W1555486954 cites W2041089815 @default.
- W1555486954 cites W2042389184 @default.
- W1555486954 cites W2045441434 @default.
- W1555486954 cites W2045517142 @default.
- W1555486954 cites W2048256811 @default.
- W1555486954 cites W2049851061 @default.
- W1555486954 cites W2053359068 @default.
- W1555486954 cites W2056077453 @default.
- W1555486954 cites W2059099247 @default.
- W1555486954 cites W2060184511 @default.
- W1555486954 cites W2066597975 @default.
- W1555486954 cites W2071463327 @default.
- W1555486954 cites W2073975803 @default.
- W1555486954 cites W2075598670 @default.
- W1555486954 cites W2077124327 @default.
- W1555486954 cites W2079647779 @default.
- W1555486954 cites W2079899518 @default.
- W1555486954 cites W2080857291 @default.
- W1555486954 cites W2080999403 @default.
- W1555486954 cites W2084202098 @default.
- W1555486954 cites W2085702368 @default.
- W1555486954 cites W2087502952 @default.
- W1555486954 cites W2088167775 @default.
- W1555486954 cites W2090897211 @default.
- W1555486954 cites W2093704459 @default.
- W1555486954 cites W2093864036 @default.
- W1555486954 cites W2094621349 @default.
- W1555486954 cites W2095566926 @default.
- W1555486954 cites W2097667423 @default.
- W1555486954 cites W2097888227 @default.
- W1555486954 cites W2099888935 @default.
- W1555486954 cites W2099910134 @default.
- W1555486954 cites W2101673942 @default.
- W1555486954 cites W2101806064 @default.
- W1555486954 cites W2103584121 @default.
- W1555486954 cites W2104201539 @default.
- W1555486954 cites W2105049877 @default.