Matches in SemOpenAlex for { <https://semopenalex.org/work/W1555565559> ?p ?o ?g. }
Showing items 1 to 40 of
40
with 100 items per page.
- W1555565559 endingPage "149" @default.
- W1555565559 startingPage "113" @default.
- W1555565559 abstract "Introduction This chapter surveys examples of sets of fractional dimension which result from particular constructions or occur in other branches of mathematics or physics and relates them to earlier parts of the book. The topics have been chosen very much at the author's whim rather than because they represent the most important occurrences of fractal sets. In each section selected results of interest are proved and others are cited. It is hoped that this approach will encourage the reader to follow up some of these topics in greater depth elsewhere. Most of the examples come from areas of mathematics which have a vast literature; therefore in this chapter references are given only to the principal sources and to recent papers and books which contain further surveys and references. Curves of fractional dimension In this section we work in the ( x,y )-coordinate plane and investigate the Hausdorff dimension of Γ, the set of points ( x,f ( x )) forming the graph of a function f defined, say, on the unit interval. If f is a function of bounded variation, that is, if is bounded for all dissections 0 = x 0 x 1 x m = l, then we are effectively back in the situation of Section 3.2; Γ is a rectifiable curve and so a regular 1-set. However, if f is a sufficiently irregular, though continuous, function it is possible for Γ to have dimension greater than 1. In such cases it can be hard to calculate the Hausdorff dimension and measure of Γ from a knowledge of f . However, if f satisfies a Lipschitz condition it is easy to obtain an upper bound." @default.
- W1555565559 created "2016-06-24" @default.
- W1555565559 creator A5022379865 @default.
- W1555565559 date "1985-01-10" @default.
- W1555565559 modified "2023-09-27" @default.
- W1555565559 title "Miscellaneous examples of fractal sets" @default.
- W1555565559 doi "https://doi.org/10.1017/cbo9780511623738.011" @default.
- W1555565559 hasPublicationYear "1985" @default.
- W1555565559 type Work @default.
- W1555565559 sameAs 1555565559 @default.
- W1555565559 citedByCount "0" @default.
- W1555565559 crossrefType "book-chapter" @default.
- W1555565559 hasAuthorship W1555565559A5022379865 @default.
- W1555565559 hasConcept C134306372 @default.
- W1555565559 hasConcept C33923547 @default.
- W1555565559 hasConcept C40636538 @default.
- W1555565559 hasConcept C41008148 @default.
- W1555565559 hasConceptScore W1555565559C134306372 @default.
- W1555565559 hasConceptScore W1555565559C33923547 @default.
- W1555565559 hasConceptScore W1555565559C40636538 @default.
- W1555565559 hasConceptScore W1555565559C41008148 @default.
- W1555565559 hasLocation W15555655591 @default.
- W1555565559 hasOpenAccess W1555565559 @default.
- W1555565559 hasPrimaryLocation W15555655591 @default.
- W1555565559 hasRelatedWork W1974891317 @default.
- W1555565559 hasRelatedWork W2007596026 @default.
- W1555565559 hasRelatedWork W2044189972 @default.
- W1555565559 hasRelatedWork W2069964982 @default.
- W1555565559 hasRelatedWork W2313400459 @default.
- W1555565559 hasRelatedWork W2748952813 @default.
- W1555565559 hasRelatedWork W2899084033 @default.
- W1555565559 hasRelatedWork W2913765211 @default.
- W1555565559 hasRelatedWork W4225152035 @default.
- W1555565559 hasRelatedWork W4245490552 @default.
- W1555565559 isParatext "false" @default.
- W1555565559 isRetracted "false" @default.
- W1555565559 magId "1555565559" @default.
- W1555565559 workType "book-chapter" @default.