Matches in SemOpenAlex for { <https://semopenalex.org/work/W155804924> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W155804924 abstract "In this thesis a semi-automatic method is developed to analyze morphometric features and landscape elements based on Self Organizing Map (SOM) as a unsupervised Artificial Neural Network algorithm. Analysis and parameterization of topography into simple and homogenous land elements (landform) can play an important role as basic information in planning processes and environmental modeling. Landforms and land cover are the main components of landscapes. Landscapes are dynamic systems that involve interrelation between physical characteristics (such as landform, soil) and anthropogenic processes (such as land use). In morphometry (as general term of geomorphometry) - the qualitative and quantitative measurement of topography - morphometric parameters are calculated such as profile curvature and longitudinal curvature. They are then used in morphometric analysis to identify morphometric features like plane, channel, ridge, peak or pit. In February 2000 the Shuttle Radar Topography Mission (SRTM), collected data over 80% of the Earth's land surface, to derive a consistent digital elevation model (DEM) for allland areas between 60 degrees N and 56 degrees S latitude. This DEM with about 90 m grid spacing was used to generate morphometric parameters of first order (slope) and second order (minimum curvature, maximum curvatures and cross-sectional curvature) by fitting a bivariate quadratic surface. These surface curvatures are strongly related to landform features and geomorphological processes. The thesis starts with an overall introduction and literature review. Then two methods for morphometric analysis are compared: morphometric parameterization and feature extraction proposed by Wood (1996a), calculated with Geographic Information Systems (GIS) software and our method implemented with Self Organizing Map (SOM) as an nsupervised artificial neural networks paradigm. Finally in our method for landscape element analysis morphometric parameters and remotely sensed spectral data are combined. The emphasis is on morphologically homogeneous landscape elements characterized by similar slope and curvature conditions. SOM is used to reduce large multidimensional data sets to one output layer consisting of 20 map units. These map units are interpreted in terms of morphometric features, slope and land cover to identify and characterize landscape elements or geoecological units Both studies have demonstrated valuable methods for extraction of land information that can be used in geomorphologic applications and geoecosystem modeling. These methods allow important savings in field work and can be used as alternative to labor intensive manual methods. But results may depend on scale and quality of the DEM and the topographic situation; caution should be used in interpretation. Evaluation of these methods in other areas with different morphometric conditions and with multi-scale DEM remains to be done." @default.
- W155804924 created "2016-06-24" @default.
- W155804924 creator A5033961365 @default.
- W155804924 creator A5072259846 @default.
- W155804924 date "2007-01-01" @default.
- W155804924 modified "2023-09-24" @default.
- W155804924 title "Terrain Features Analysis using Morphometric Parameterization and Neural Networks" @default.
- W155804924 hasPublicationYear "2007" @default.
- W155804924 type Work @default.
- W155804924 sameAs 155804924 @default.
- W155804924 citedByCount "0" @default.
- W155804924 crossrefType "journal-article" @default.
- W155804924 hasAuthorship W155804924A5033961365 @default.
- W155804924 hasAuthorship W155804924A5072259846 @default.
- W155804924 hasConcept C108497213 @default.
- W155804924 hasConcept C114793014 @default.
- W155804924 hasConcept C127313418 @default.
- W155804924 hasConcept C127413603 @default.
- W155804924 hasConcept C147176958 @default.
- W155804924 hasConcept C151730666 @default.
- W155804924 hasConcept C161840515 @default.
- W155804924 hasConcept C181843262 @default.
- W155804924 hasConcept C184149073 @default.
- W155804924 hasConcept C195065555 @default.
- W155804924 hasConcept C205649164 @default.
- W155804924 hasConcept C2524010 @default.
- W155804924 hasConcept C2780648208 @default.
- W155804924 hasConcept C32277403 @default.
- W155804924 hasConcept C33923547 @default.
- W155804924 hasConcept C4792198 @default.
- W155804924 hasConcept C58640448 @default.
- W155804924 hasConcept C62649853 @default.
- W155804924 hasConceptScore W155804924C108497213 @default.
- W155804924 hasConceptScore W155804924C114793014 @default.
- W155804924 hasConceptScore W155804924C127313418 @default.
- W155804924 hasConceptScore W155804924C127413603 @default.
- W155804924 hasConceptScore W155804924C147176958 @default.
- W155804924 hasConceptScore W155804924C151730666 @default.
- W155804924 hasConceptScore W155804924C161840515 @default.
- W155804924 hasConceptScore W155804924C181843262 @default.
- W155804924 hasConceptScore W155804924C184149073 @default.
- W155804924 hasConceptScore W155804924C195065555 @default.
- W155804924 hasConceptScore W155804924C205649164 @default.
- W155804924 hasConceptScore W155804924C2524010 @default.
- W155804924 hasConceptScore W155804924C2780648208 @default.
- W155804924 hasConceptScore W155804924C32277403 @default.
- W155804924 hasConceptScore W155804924C33923547 @default.
- W155804924 hasConceptScore W155804924C4792198 @default.
- W155804924 hasConceptScore W155804924C58640448 @default.
- W155804924 hasConceptScore W155804924C62649853 @default.
- W155804924 hasLocation W1558049241 @default.
- W155804924 hasOpenAccess W155804924 @default.
- W155804924 hasPrimaryLocation W1558049241 @default.
- W155804924 hasRelatedWork W111331592 @default.
- W155804924 hasRelatedWork W2006636507 @default.
- W155804924 hasRelatedWork W2035009203 @default.
- W155804924 hasRelatedWork W2070595903 @default.
- W155804924 hasRelatedWork W2075007002 @default.
- W155804924 hasRelatedWork W2083896507 @default.
- W155804924 hasRelatedWork W2099625968 @default.
- W155804924 hasRelatedWork W2101922285 @default.
- W155804924 hasRelatedWork W2160886094 @default.
- W155804924 hasRelatedWork W2162809584 @default.
- W155804924 hasRelatedWork W2165232693 @default.
- W155804924 hasRelatedWork W2289291335 @default.
- W155804924 hasRelatedWork W2374499692 @default.
- W155804924 hasRelatedWork W2464694105 @default.
- W155804924 hasRelatedWork W2605195400 @default.
- W155804924 hasRelatedWork W2749234186 @default.
- W155804924 hasRelatedWork W2792322195 @default.
- W155804924 hasRelatedWork W2941544278 @default.
- W155804924 hasRelatedWork W3009839749 @default.
- W155804924 hasRelatedWork W2910301103 @default.
- W155804924 isParatext "false" @default.
- W155804924 isRetracted "false" @default.
- W155804924 magId "155804924" @default.
- W155804924 workType "article" @default.