Matches in SemOpenAlex for { <https://semopenalex.org/work/W1558284907> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W1558284907 endingPage "62" @default.
- W1558284907 startingPage "51" @default.
- W1558284907 abstract "This paper presents a supervised machine learning approach for summarizing legal documents A commercial system for the analysis and summarization of legal documents provided us with a corpus of almost 4,000 text and extract pairs for our machine learning experiments That corpus was pre-processed to identify the selected source sentences in extracts from which we generated legal structured data We finally describe our sentence classification experiments relying on a Naive Bayes classifier using a set of surface, emphasis, and content features." @default.
- W1558284907 created "2016-06-24" @default.
- W1558284907 creator A5004268705 @default.
- W1558284907 creator A5045732893 @default.
- W1558284907 creator A5058447697 @default.
- W1558284907 date "2010-01-01" @default.
- W1558284907 modified "2023-10-03" @default.
- W1558284907 title "Supervised Machine Learning for Summarizing Legal Documents" @default.
- W1558284907 cites W2058885906 @default.
- W1558284907 cites W2070971859 @default.
- W1558284907 cites W2120879767 @default.
- W1558284907 cites W2133990480 @default.
- W1558284907 doi "https://doi.org/10.1007/978-3-642-13059-5_8" @default.
- W1558284907 hasPublicationYear "2010" @default.
- W1558284907 type Work @default.
- W1558284907 sameAs 1558284907 @default.
- W1558284907 citedByCount "22" @default.
- W1558284907 countsByYear W15582849072012 @default.
- W1558284907 countsByYear W15582849072013 @default.
- W1558284907 countsByYear W15582849072014 @default.
- W1558284907 countsByYear W15582849072017 @default.
- W1558284907 countsByYear W15582849072018 @default.
- W1558284907 countsByYear W15582849072019 @default.
- W1558284907 countsByYear W15582849072020 @default.
- W1558284907 countsByYear W15582849072021 @default.
- W1558284907 crossrefType "book-chapter" @default.
- W1558284907 hasAuthorship W1558284907A5004268705 @default.
- W1558284907 hasAuthorship W1558284907A5045732893 @default.
- W1558284907 hasAuthorship W1558284907A5058447697 @default.
- W1558284907 hasConcept C119857082 @default.
- W1558284907 hasConcept C154945302 @default.
- W1558284907 hasConcept C204321447 @default.
- W1558284907 hasConcept C23123220 @default.
- W1558284907 hasConcept C41008148 @default.
- W1558284907 hasConceptScore W1558284907C119857082 @default.
- W1558284907 hasConceptScore W1558284907C154945302 @default.
- W1558284907 hasConceptScore W1558284907C204321447 @default.
- W1558284907 hasConceptScore W1558284907C23123220 @default.
- W1558284907 hasConceptScore W1558284907C41008148 @default.
- W1558284907 hasLocation W15582849071 @default.
- W1558284907 hasOpenAccess W1558284907 @default.
- W1558284907 hasPrimaryLocation W15582849071 @default.
- W1558284907 hasRelatedWork W2144190808 @default.
- W1558284907 hasRelatedWork W2357241418 @default.
- W1558284907 hasRelatedWork W2366644548 @default.
- W1558284907 hasRelatedWork W2376314740 @default.
- W1558284907 hasRelatedWork W2384888906 @default.
- W1558284907 hasRelatedWork W2961085424 @default.
- W1558284907 hasRelatedWork W3107474891 @default.
- W1558284907 hasRelatedWork W4286629047 @default.
- W1558284907 hasRelatedWork W4306674287 @default.
- W1558284907 hasRelatedWork W4224009465 @default.
- W1558284907 isParatext "false" @default.
- W1558284907 isRetracted "false" @default.
- W1558284907 magId "1558284907" @default.
- W1558284907 workType "book-chapter" @default.