Matches in SemOpenAlex for { <https://semopenalex.org/work/W1558648730> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W1558648730 abstract "In design, plan, project, construction, maintenance, and especially management of water resources, surface water input and output must be calculated based on measurements. One of the priority parameter is surface flow in the studies. The flow data measured in the past is required for design of the water structure be built in the future and calculation of natural disasters such as flood and drought according to the pre-specified risk level (Sen, 2003). Stochastic models and artificial intelligence techniques (artificial neural networks, fuzzy logic and adaptive neuro fuzzy inference systems etc.) on flow predicting are commonly used by many researchers while data mining (DM) process is not yet widely used in the hydrology area. Russo et al. (2006) fitted a stochastic rainfall model to rainfall radar data in order to produce a realistic representation of the distribution of rainfall in space and time. The results show that the model, calibrated on the study area, is able to forecast satisfactorily the rain field in space and time. Archer & Fowler (2008) investigated the links between climate and runoff for eight gauging stations in the Jhelum catchment but then concentrated on seasonal forecasting of spring and summer inflows to Mangla Dam. They are used precipitation and temperature variables to forecast summer season flows at stations upstream from the reservoir with a lead time of up to three months based on multiple linear regression models. The analysis demonstrates that good forecasts within 15% of observed flows for 92% of years can be achieved for summer season flows from April to September. For spring flows from April to June, excellent forecasts can be provided within 15% of observed flows for 83% of years. Lin & Chen (2004) used the radial basis function network (RBFN) to construct a rainfall-runoff model, and presented the fully supervised learning algorithm for the parametric estimation of the network. The proposed methodology has been applied to an actual reservoir watershed to forecast the oneto three-hour ahead runoff. The result shows that the RBFN can be successfully applied to build the relation of rainfall and runoff. Rajurkar et al. (2004) presented an approach for modeling daily flows during flood events using ANN. They showed that the approach produces reasonably satisfactory results for data of catchments from different geographical locations. Nayak et al. (2004) suggested that performance of ANFIS model is capable of preserving the statistical properties of the time series and it is viable for modeling river flow series. Keskin et al. (2006) developed a flow prediction model, based on the adaptive neural-based fuzzy inference system (ANFIS) coupled with stochastic hydrological models. An ANFIS is applied to river flow prediction in Dim Stream in the southern part of Turkey. Synthetic" @default.
- W1558648730 created "2016-06-24" @default.
- W1558648730 creator A5078170981 @default.
- W1558648730 date "2011-01-21" @default.
- W1558648730 modified "2023-09-25" @default.
- W1558648730 title "Monthly River Flow Forecasting by Data Mining Process" @default.
- W1558648730 cites W1489920315 @default.
- W1558648730 cites W1502139203 @default.
- W1558648730 cites W1969349343 @default.
- W1558648730 cites W1973676661 @default.
- W1558648730 cites W1975307294 @default.
- W1558648730 cites W2012254584 @default.
- W1558648730 cites W2015655415 @default.
- W1558648730 cites W2018306467 @default.
- W1558648730 cites W2028317382 @default.
- W1558648730 cites W2029629601 @default.
- W1558648730 cites W2062255227 @default.
- W1558648730 cites W2082382823 @default.
- W1558648730 cites W2094312930 @default.
- W1558648730 cites W2115393530 @default.
- W1558648730 cites W2131682353 @default.
- W1558648730 cites W2154859371 @default.
- W1558648730 cites W2508282516 @default.
- W1558648730 cites W3000391989 @default.
- W1558648730 doi "https://doi.org/10.5772/13566" @default.
- W1558648730 hasPublicationYear "2011" @default.
- W1558648730 type Work @default.
- W1558648730 sameAs 1558648730 @default.
- W1558648730 citedByCount "5" @default.
- W1558648730 countsByYear W15586487302014 @default.
- W1558648730 countsByYear W15586487302015 @default.
- W1558648730 countsByYear W15586487302016 @default.
- W1558648730 countsByYear W15586487302017 @default.
- W1558648730 countsByYear W15586487302022 @default.
- W1558648730 crossrefType "book-chapter" @default.
- W1558648730 hasAuthorship W1558648730A5078170981 @default.
- W1558648730 hasBestOaLocation W15586487301 @default.
- W1558648730 hasConcept C111919701 @default.
- W1558648730 hasConcept C124101348 @default.
- W1558648730 hasConcept C127313418 @default.
- W1558648730 hasConcept C187320778 @default.
- W1558648730 hasConcept C39432304 @default.
- W1558648730 hasConcept C41008148 @default.
- W1558648730 hasConcept C76886044 @default.
- W1558648730 hasConcept C98045186 @default.
- W1558648730 hasConceptScore W1558648730C111919701 @default.
- W1558648730 hasConceptScore W1558648730C124101348 @default.
- W1558648730 hasConceptScore W1558648730C127313418 @default.
- W1558648730 hasConceptScore W1558648730C187320778 @default.
- W1558648730 hasConceptScore W1558648730C39432304 @default.
- W1558648730 hasConceptScore W1558648730C41008148 @default.
- W1558648730 hasConceptScore W1558648730C76886044 @default.
- W1558648730 hasConceptScore W1558648730C98045186 @default.
- W1558648730 hasLocation W15586487301 @default.
- W1558648730 hasLocation W15586487302 @default.
- W1558648730 hasOpenAccess W1558648730 @default.
- W1558648730 hasPrimaryLocation W15586487301 @default.
- W1558648730 hasRelatedWork W1975206529 @default.
- W1558648730 hasRelatedWork W2314655143 @default.
- W1558648730 hasRelatedWork W2347219288 @default.
- W1558648730 hasRelatedWork W2348097614 @default.
- W1558648730 hasRelatedWork W2359082537 @default.
- W1558648730 hasRelatedWork W2370652759 @default.
- W1558648730 hasRelatedWork W2899084033 @default.
- W1558648730 hasRelatedWork W2991775247 @default.
- W1558648730 hasRelatedWork W599830596 @default.
- W1558648730 hasRelatedWork W831794578 @default.
- W1558648730 isParatext "false" @default.
- W1558648730 isRetracted "false" @default.
- W1558648730 magId "1558648730" @default.
- W1558648730 workType "book-chapter" @default.