Matches in SemOpenAlex for { <https://semopenalex.org/work/W1558766978> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1558766978 abstract "This paper illustrates how a combination of information extraction, machine learning, and NLP corpus annotation practice was applied to a problem of ranking vulnerability of structures (service boxes, manholes) in the Manhattan electrical grid. By adapting NLP corpus annotation methods to the task of knowledge transfer from domain experts, we compensated for the lack of operational definitions of components of the model, such as serious event . The machine learning depended on the ticket classes, but it was not the end goal. Rather, our rule-based document classification determines both the labels of examples and their feature representations. Changes in our classification of events led to improvements in our model, as reflected in the AUC scores for the full ranked list of over 51K structures. The improvements for the very top of the ranked list, which is of most importance for prioritizing work on the electrical grid, affected one in every four or five structures." @default.
- W1558766978 created "2016-06-24" @default.
- W1558766978 creator A5006019665 @default.
- W1558766978 creator A5039621382 @default.
- W1558766978 creator A5040468715 @default.
- W1558766978 creator A5063295796 @default.
- W1558766978 date "2009-01-01" @default.
- W1558766978 modified "2023-09-26" @default.
- W1558766978 title "Reducing Noise in Labels and Features for a Real World Dataset: Application of NLP Corpus Annotation Methods" @default.
- W1558766978 cites W2053154970 @default.
- W1558766978 cites W2070771761 @default.
- W1558766978 cites W2151914668 @default.
- W1558766978 cites W2164777277 @default.
- W1558766978 doi "https://doi.org/10.1007/978-3-642-00382-0_7" @default.
- W1558766978 hasPublicationYear "2009" @default.
- W1558766978 type Work @default.
- W1558766978 sameAs 1558766978 @default.
- W1558766978 citedByCount "8" @default.
- W1558766978 countsByYear W15587669782012 @default.
- W1558766978 countsByYear W15587669782014 @default.
- W1558766978 countsByYear W15587669782021 @default.
- W1558766978 crossrefType "book-chapter" @default.
- W1558766978 hasAuthorship W1558766978A5006019665 @default.
- W1558766978 hasAuthorship W1558766978A5039621382 @default.
- W1558766978 hasAuthorship W1558766978A5040468715 @default.
- W1558766978 hasAuthorship W1558766978A5063295796 @default.
- W1558766978 hasConcept C119857082 @default.
- W1558766978 hasConcept C154945302 @default.
- W1558766978 hasConcept C162324750 @default.
- W1558766978 hasConcept C187691185 @default.
- W1558766978 hasConcept C187736073 @default.
- W1558766978 hasConcept C189430467 @default.
- W1558766978 hasConcept C195807954 @default.
- W1558766978 hasConcept C204321447 @default.
- W1558766978 hasConcept C23123220 @default.
- W1558766978 hasConcept C2524010 @default.
- W1558766978 hasConcept C2776321320 @default.
- W1558766978 hasConcept C2780451532 @default.
- W1558766978 hasConcept C33923547 @default.
- W1558766978 hasConcept C41008148 @default.
- W1558766978 hasConceptScore W1558766978C119857082 @default.
- W1558766978 hasConceptScore W1558766978C154945302 @default.
- W1558766978 hasConceptScore W1558766978C162324750 @default.
- W1558766978 hasConceptScore W1558766978C187691185 @default.
- W1558766978 hasConceptScore W1558766978C187736073 @default.
- W1558766978 hasConceptScore W1558766978C189430467 @default.
- W1558766978 hasConceptScore W1558766978C195807954 @default.
- W1558766978 hasConceptScore W1558766978C204321447 @default.
- W1558766978 hasConceptScore W1558766978C23123220 @default.
- W1558766978 hasConceptScore W1558766978C2524010 @default.
- W1558766978 hasConceptScore W1558766978C2776321320 @default.
- W1558766978 hasConceptScore W1558766978C2780451532 @default.
- W1558766978 hasConceptScore W1558766978C33923547 @default.
- W1558766978 hasConceptScore W1558766978C41008148 @default.
- W1558766978 hasLocation W15587669781 @default.
- W1558766978 hasOpenAccess W1558766978 @default.
- W1558766978 hasPrimaryLocation W15587669781 @default.
- W1558766978 hasRelatedWork W14498012 @default.
- W1558766978 hasRelatedWork W1996323751 @default.
- W1558766978 hasRelatedWork W2035532225 @default.
- W1558766978 hasRelatedWork W2072136246 @default.
- W1558766978 hasRelatedWork W2121824931 @default.
- W1558766978 hasRelatedWork W2128278816 @default.
- W1558766978 hasRelatedWork W2137210015 @default.
- W1558766978 hasRelatedWork W2250818300 @default.
- W1558766978 hasRelatedWork W2251104783 @default.
- W1558766978 hasRelatedWork W2338784100 @default.
- W1558766978 hasRelatedWork W2888255003 @default.
- W1558766978 hasRelatedWork W2896642929 @default.
- W1558766978 hasRelatedWork W2901239009 @default.
- W1558766978 hasRelatedWork W2905708338 @default.
- W1558766978 hasRelatedWork W2989102449 @default.
- W1558766978 hasRelatedWork W3033585268 @default.
- W1558766978 hasRelatedWork W3037503597 @default.
- W1558766978 hasRelatedWork W3047377019 @default.
- W1558766978 hasRelatedWork W3135265100 @default.
- W1558766978 hasRelatedWork W3135501921 @default.
- W1558766978 isParatext "false" @default.
- W1558766978 isRetracted "false" @default.
- W1558766978 magId "1558766978" @default.
- W1558766978 workType "book-chapter" @default.