Matches in SemOpenAlex for { <https://semopenalex.org/work/W1559708315> ?p ?o ?g. }
- W1559708315 abstract "Abstract The study of processes that transpire at heterogeneous interfaces is an exceedingly difficult proposition. No single experimental technique can ever hope to unravel all the nuances of heterogeneous reactions; hence, in surface science, the use of multiple complementary methods is not uncommon. Ultrahigh vacuum electrochemistry (UHV/EC) is a term ascribed to the approach that rests upon the integration of classical electrochemical methods with surface‐sensitive analytical techniques; this strategy parallels that successfully implemented in the study of gas–solid heterogeneous catalysis. The unique surface sensitivity of the techniques adopted emanates from the use of particles (e.g. ions or electrons) that serve to interrogate the outermost layer(s) of the electrode. This surface sensitivity is tempered by the requirement that the analysis be performed in an environment (outside the electrochemical cell) that does not impede the mean‐free paths of the probe particles. Since its inception in the early 1970s, more than a thousand UHV/EC‐based studies have been published; most of the work involved polycrystalline materials and focused on the elemental composition at the electrode surface. While its importance in the study of polycrystalline surfaces cannot be trivialized, the greater value of UHV/EC appears to be in its ability to help resolve fundamental issues that intertwine interfacial structure and composition with electrochemical reactivity. It is in this context that the present review is written. A complete mechanism of an electrochemical reaction must incorporate all the physical and chemical interactions that arise between an electrified surface and its environment. The extent of such interactions depends upon several factors such as solvent, supporting electrolyte, electrode potential, reactant concentration, electrode material and surface crystallographic orientation. The traditional approach is based upon a thermodynamic treatment of the interface and its response to external perturbations. Interpretation of the results relies on phenomenological models of the interface. Although a thermodynamic treatment cannot be ignored, the need for an atomic‐level view has long been realized. One approach1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 towards the establishment of an atomic‐level description parallels that successfully implemented in the study of gas–solid heterogeneous catalysis; it rests upon the integration of classical electrochemical methods with surface‐sensitive analytical techniques. The analytical methods that exhibit surface sensitivity are based upon the mass‐selection and/or energy‐discrimination of electrons, ions, atoms or molecules scattered from solid surfaces. These particles have shallow escape depths; hence the information they bear is characteristic of the near‐surface layers. Their short mean‐free paths, however, necessitate a high vacuum (<10 −6 torr) environment. The application of such surface techniques to electrochemistry requires that the analysis be performed outside the electrochemical cell. The possibility of structural and compositional changes that accompany the removal of the electrode from solution is the major concern in UHV/EC studies. Although a myriad of surface analytical techniques is currently available, those actually employed in UHV/EC have been limited to low‐energy electron diffraction (LEED), Auger electron spectroscopy (AES), X‐ray photoelectron spectroscopy (XPS), high‐resolution electron energy loss spectroscopy (HREELS), reflection high‐energy electron diffraction (RHEED), work‐function changes, and thermal desorption mass spectrometry (TDMS). While most vacuum‐based analytical methods do not require single‐crystal surfaces, the use of uniform (monocrystalline) surfaces is a necessary aspect for fundamental studies. The low‐index crystallographic faces [(100), (110) and (111)] have been widely used because of their low free energies, high symmetries, and relative stabilities. In addition, it may be possible to reconstruct the overall behavior of polycrystalline electrodes from the individual properties of the low‐index planes. 1, 2, 3, 4 A handful of procedures for the preparation and preservation of well‐defined single‐crystal surfaces have been described. 5, 6, 7, 8 The verification or identification of initial, intermediate, and final interfacial structures and compositions is an essential ingredient in electrochemical surface science." @default.
- W1559708315 created "2016-06-24" @default.
- W1559708315 creator A5084466538 @default.
- W1559708315 date "2000-10-30" @default.
- W1559708315 modified "2023-10-10" @default.
- W1559708315 title "Surface Analysis for Electrochemistry: Ultrahigh Vacuum Techniques" @default.
- W1559708315 cites W1492028545 @default.
- W1559708315 cites W1510473712 @default.
- W1559708315 cites W1522811949 @default.
- W1559708315 cites W1540511541 @default.
- W1559708315 cites W1542399067 @default.
- W1559708315 cites W1548918622 @default.
- W1559708315 cites W1571677772 @default.
- W1559708315 cites W1576266872 @default.
- W1559708315 cites W1662399461 @default.
- W1559708315 cites W1806263359 @default.
- W1559708315 cites W1816010528 @default.
- W1559708315 cites W1884149114 @default.
- W1559708315 cites W1967340077 @default.
- W1559708315 cites W1969010202 @default.
- W1559708315 cites W1974577042 @default.
- W1559708315 cites W1976779645 @default.
- W1559708315 cites W1978095578 @default.
- W1559708315 cites W1978685622 @default.
- W1559708315 cites W1978697091 @default.
- W1559708315 cites W1978971356 @default.
- W1559708315 cites W1980288538 @default.
- W1559708315 cites W1980345647 @default.
- W1559708315 cites W1982491353 @default.
- W1559708315 cites W1984693235 @default.
- W1559708315 cites W1988632271 @default.
- W1559708315 cites W1991781205 @default.
- W1559708315 cites W1992216169 @default.
- W1559708315 cites W1992410727 @default.
- W1559708315 cites W1992776585 @default.
- W1559708315 cites W1993720393 @default.
- W1559708315 cites W1995005320 @default.
- W1559708315 cites W1996589943 @default.
- W1559708315 cites W1997275258 @default.
- W1559708315 cites W1999211454 @default.
- W1559708315 cites W2001611094 @default.
- W1559708315 cites W2003259586 @default.
- W1559708315 cites W2003930584 @default.
- W1559708315 cites W2003973805 @default.
- W1559708315 cites W2005477968 @default.
- W1559708315 cites W2005554095 @default.
- W1559708315 cites W2005840410 @default.
- W1559708315 cites W2006019369 @default.
- W1559708315 cites W2009779967 @default.
- W1559708315 cites W2010154632 @default.
- W1559708315 cites W2010551614 @default.
- W1559708315 cites W2013159720 @default.
- W1559708315 cites W2013220180 @default.
- W1559708315 cites W2014001425 @default.
- W1559708315 cites W2014328947 @default.
- W1559708315 cites W2014772503 @default.
- W1559708315 cites W2015860880 @default.
- W1559708315 cites W2017015916 @default.
- W1559708315 cites W2017504581 @default.
- W1559708315 cites W2018077125 @default.
- W1559708315 cites W2020224065 @default.
- W1559708315 cites W2020505293 @default.
- W1559708315 cites W2022174913 @default.
- W1559708315 cites W2024168162 @default.
- W1559708315 cites W2024331918 @default.
- W1559708315 cites W2024358177 @default.
- W1559708315 cites W2027557719 @default.
- W1559708315 cites W202764353 @default.
- W1559708315 cites W2027843729 @default.
- W1559708315 cites W2033136592 @default.
- W1559708315 cites W2036622145 @default.
- W1559708315 cites W2037568625 @default.
- W1559708315 cites W2039727761 @default.
- W1559708315 cites W2040362179 @default.
- W1559708315 cites W2040853268 @default.
- W1559708315 cites W2041676526 @default.
- W1559708315 cites W2042943802 @default.
- W1559708315 cites W2043369583 @default.
- W1559708315 cites W2045351395 @default.
- W1559708315 cites W2045713879 @default.
- W1559708315 cites W2046485345 @default.
- W1559708315 cites W2046545097 @default.
- W1559708315 cites W2046679625 @default.
- W1559708315 cites W2047488593 @default.
- W1559708315 cites W2047556450 @default.
- W1559708315 cites W2048433618 @default.
- W1559708315 cites W2050743135 @default.
- W1559708315 cites W2052733245 @default.
- W1559708315 cites W2054481934 @default.
- W1559708315 cites W2057666559 @default.
- W1559708315 cites W2061925190 @default.
- W1559708315 cites W2063782140 @default.
- W1559708315 cites W2064527627 @default.
- W1559708315 cites W2066683734 @default.
- W1559708315 cites W2066830172 @default.
- W1559708315 cites W2067021730 @default.
- W1559708315 cites W2067239023 @default.
- W1559708315 cites W2070204542 @default.
- W1559708315 cites W2071342366 @default.
- W1559708315 cites W2071738321 @default.