Matches in SemOpenAlex for { <https://semopenalex.org/work/W1562483544> ?p ?o ?g. }
- W1562483544 abstract "This thesis reports on results of three different experiments of photo-induced structural dynamics in the condensed phase, investigated by time-resolved pump-probe spectroscopy with femtosecond time-resolution. In the first part, we address the ultrafast dynamics of a quantum solid : crystalline hydrogen. This is accomplished by optical excitation of a dopant molecule, Nitric Oxide (NO), to a large orbital Rydberg state, which leads to a bubble-like expansion of the species surrounding the impurity. The dynamics is directly inferred from the time-resolved data, and compared with the results of molecular dynamics simulations. We report the presence of three time-scales in the structural relaxation mechanism: the first 200 fs are associated with the ultrafast inertial expansion of the first shell of lattice neighbors of NO. During the successive 0.6 ps, as the interactions between the molecules of the first and of the successive shells increase, we observe a progressive slowing-down of the bubble expansion. The third timescale ( 10 ps) is interpreted as a slow structural re-organization around the impurity center. No differences were observed between the dynamics of normal- and para-hydrogen crystals, justifying the simplified model we use to interpret the data, which ignores all internal degrees of freedom of the host molecules. The molecular dynamics simulations reproduce fairly well the static and dynamic features of the experiment. In line with the measurements, they indicate that the quantum nature of the host medium plays no role in the initial ultrafast expansion of the bubble. In the second part, we present the results of our study on the photo-physics of triangular-shaped silver nanoparticles upon intraband excitation of the conduction electrons. The picosecond dynamics is dominated by periodic shifts of the surface plasmon resonance, associated with the size oscillations of the particles, triggered by impulsive lattice heating by the laser pulse. The oscillation period compares very well with the lowest totally symmetric vibrational frequency of a triangular-plate, which we calculated improving an existing elastodynamic model. We propose an explanation for the unusual phase behavior of the oscillations, based upon the non-spherical shape, and size-inhomogeneity of the sample. Taking into account these effects, we are able to reproduce spectrally and temporally our data. In the last part, we present a comparative study of the ligand dynamics in heme proteins. We studied the photo-induced spectroscopic changes in the ferric CN complexes of Myoglobin and Hemoglobin I upon photo-excitation of the porphyrin ring to a low-lying electronic state (Soret), monitoring the UV-visible region of the Soret band, and the mid-infrared region of the fundamental C=N vibrational stretch. The transient response in the UV-visible spectral region does not depend on the heme pocket environment, and is very similar to that known for ferrous proteins. The infrared data on the MbC=N stretch vibration provides a direct measure for the return of population to the ligated electronic (and vibrational) ground state with a 3 ps time constant. In addition, the CN stretch frequency is sensitive to the excitation of low frequency heme modes, and yields independent information about vibrational cooling, which occurs on the same timescale. The similarity between ferrous and ferric hemes rules out the charge transfer processes commonly invoked to explain the ligand dissociation in the former." @default.
- W1562483544 created "2016-06-24" @default.
- W1562483544 creator A5026263629 @default.
- W1562483544 date "2004-01-01" @default.
- W1562483544 modified "2023-09-23" @default.
- W1562483544 title "Ultrafast structural dynamics in electronically excited many-body systems" @default.
- W1562483544 cites W138995052 @default.
- W1562483544 cites W1552736770 @default.
- W1562483544 cites W1556801875 @default.
- W1562483544 cites W1571201200 @default.
- W1562483544 cites W1585382007 @default.
- W1562483544 cites W1655095797 @default.
- W1562483544 cites W1964021173 @default.
- W1562483544 cites W1966176074 @default.
- W1562483544 cites W1966682263 @default.
- W1562483544 cites W1966691871 @default.
- W1562483544 cites W1967227852 @default.
- W1562483544 cites W1970625505 @default.
- W1562483544 cites W1970685381 @default.
- W1562483544 cites W1976852486 @default.
- W1562483544 cites W1977237905 @default.
- W1562483544 cites W1980215327 @default.
- W1562483544 cites W1983173101 @default.
- W1562483544 cites W1984839306 @default.
- W1562483544 cites W1984994174 @default.
- W1562483544 cites W1989409538 @default.
- W1562483544 cites W1990262611 @default.
- W1562483544 cites W1991345264 @default.
- W1562483544 cites W1997836436 @default.
- W1562483544 cites W1998455235 @default.
- W1562483544 cites W2000945380 @default.
- W1562483544 cites W2001591769 @default.
- W1562483544 cites W2003184500 @default.
- W1562483544 cites W2004768309 @default.
- W1562483544 cites W2005161344 @default.
- W1562483544 cites W2008610434 @default.
- W1562483544 cites W2009492274 @default.
- W1562483544 cites W2010056946 @default.
- W1562483544 cites W2013512914 @default.
- W1562483544 cites W2015229726 @default.
- W1562483544 cites W2016428817 @default.
- W1562483544 cites W2016533302 @default.
- W1562483544 cites W2018175939 @default.
- W1562483544 cites W2019688079 @default.
- W1562483544 cites W2021314754 @default.
- W1562483544 cites W2021319382 @default.
- W1562483544 cites W2021582259 @default.
- W1562483544 cites W2023876126 @default.
- W1562483544 cites W2026212845 @default.
- W1562483544 cites W2026247264 @default.
- W1562483544 cites W2026483401 @default.
- W1562483544 cites W2027627616 @default.
- W1562483544 cites W2028548603 @default.
- W1562483544 cites W2029507835 @default.
- W1562483544 cites W2030127122 @default.
- W1562483544 cites W2034005337 @default.
- W1562483544 cites W2035203612 @default.
- W1562483544 cites W2039458465 @default.
- W1562483544 cites W2039638265 @default.
- W1562483544 cites W2042137779 @default.
- W1562483544 cites W2043706585 @default.
- W1562483544 cites W2046002177 @default.
- W1562483544 cites W2046469145 @default.
- W1562483544 cites W2049991844 @default.
- W1562483544 cites W2052126651 @default.
- W1562483544 cites W2052352379 @default.
- W1562483544 cites W2054220594 @default.
- W1562483544 cites W2055367386 @default.
- W1562483544 cites W2056128814 @default.
- W1562483544 cites W2056722718 @default.
- W1562483544 cites W2056971091 @default.
- W1562483544 cites W2057344055 @default.
- W1562483544 cites W2057981610 @default.
- W1562483544 cites W2058571540 @default.
- W1562483544 cites W2059969202 @default.
- W1562483544 cites W2060576842 @default.
- W1562483544 cites W2061066489 @default.
- W1562483544 cites W2061634453 @default.
- W1562483544 cites W2063743590 @default.
- W1562483544 cites W2064517262 @default.
- W1562483544 cites W2067980310 @default.
- W1562483544 cites W2072808339 @default.
- W1562483544 cites W2077291180 @default.
- W1562483544 cites W2079753165 @default.
- W1562483544 cites W2082944271 @default.
- W1562483544 cites W2086781211 @default.
- W1562483544 cites W2088044310 @default.
- W1562483544 cites W2089854427 @default.
- W1562483544 cites W2110614738 @default.
- W1562483544 cites W2111910284 @default.
- W1562483544 cites W2130578590 @default.
- W1562483544 cites W2136530314 @default.
- W1562483544 cites W2136603482 @default.
- W1562483544 cites W2143144190 @default.
- W1562483544 cites W2152744436 @default.
- W1562483544 cites W2160763347 @default.
- W1562483544 cites W2161955980 @default.
- W1562483544 cites W2165822984 @default.
- W1562483544 cites W2166927494 @default.
- W1562483544 cites W2417241056 @default.