Matches in SemOpenAlex for { <https://semopenalex.org/work/W1562641538> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1562641538 abstract "Satellite-to-Satellite Tracking (SST) and Satellite Gravity Gradiometry (SGG) are two useful ways of reconstructing the earth's gravitational potential from satellite data, delivered by low-flying satellite missions such as CHAMP (launched 2000) or the future mission GOCE. In SST and SGG, discrete scalar data of the first and the second radial derivative of the earth's gravitational potential, respectively, are given on the satellite orbit. The determination of the gravitational potential on and outside the earth's surface from these data is an exponentially ill-posed problem. In this thesis, we investigate the reconstruction of the earth's gravitational potential from such data with two different approaches, using splines, wavelets, regularization techniques, and a domain decomposition method. These methods are based on space-localizing structures and allow global reconstructions, as well as local reconstructions of the potential from only locally given data. The numerical simulations in this thesis are carried out with data corresponding to a frequency band of EGM96 (Earth Gravitational Model 96). In the first approach, we compute a smoothing spline from the gravitational data. This smoothing spline is an approximation of the earth's gravitational potential. Here, spline smoothing compensates for the ill-posedness of the problem. Scaling functions and wavelets yield a multiresolution analysis of the potential. In the second approach, we approximate the (first or second order) radial derivative of the potential on the satellite orbit with the help of a spline. Then regularization scaling functions and regularization wavelets are applied to reconstruct the gravitational potential on and outside the earth's surface in a multiscale representation. A central feature in both approaches is the computation of an approximating spline from a large data set. This demands the solution of a linear system with a positive definite, symmetric $Ntimes N$-matrix, in case of $N$ measurements. These systems are solved efficiently with a domain decomposition method, namely a multiplicative variant of the Schwarz alternating algorithm. This algorithm is an iterative scheme which splits the large matrix into smaller overlapping positive definite, symmetric submatrices and solves corresponding small linear systems in each iterative step. Application of the algorithm to spline interpolation and spline smoothing reduces the CPU-time and the memory requirement considerably and allows one to solve systems of a size that could not be handled before. The splines in this thesis are directly related to the set of bounded linear measurement functionals, and the spline interpolation operator is the orthogonal projector onto the spline space. In addition, parameter choice strategies for spline smoothing, based on a structural similarity between Tikhonov regularization and spline smoothing, are proposed and applied." @default.
- W1562641538 created "2016-06-24" @default.
- W1562641538 creator A5085812441 @default.
- W1562641538 date "2003-01-30" @default.
- W1562641538 modified "2023-09-26" @default.
- W1562641538 title "Domain Decomposition Methods in Multiscale Geopotential Determination from SST and SGG" @default.
- W1562641538 hasPublicationYear "2003" @default.
- W1562641538 type Work @default.
- W1562641538 sameAs 1562641538 @default.
- W1562641538 citedByCount "8" @default.
- W1562641538 countsByYear W15626415382012 @default.
- W1562641538 crossrefType "book" @default.
- W1562641538 hasAuthorship W1562641538A5085812441 @default.
- W1562641538 hasConcept C10390562 @default.
- W1562641538 hasConcept C11413529 @default.
- W1562641538 hasConcept C121332964 @default.
- W1562641538 hasConcept C124017977 @default.
- W1562641538 hasConcept C127090403 @default.
- W1562641538 hasConcept C127313418 @default.
- W1562641538 hasConcept C1276947 @default.
- W1562641538 hasConcept C13280743 @default.
- W1562641538 hasConcept C134306372 @default.
- W1562641538 hasConcept C14257148 @default.
- W1562641538 hasConcept C154945302 @default.
- W1562641538 hasConcept C160121416 @default.
- W1562641538 hasConcept C19269812 @default.
- W1562641538 hasConcept C2776135515 @default.
- W1562641538 hasConcept C31972630 @default.
- W1562641538 hasConcept C33923547 @default.
- W1562641538 hasConcept C3770464 @default.
- W1562641538 hasConcept C41008148 @default.
- W1562641538 hasConcept C47432892 @default.
- W1562641538 hasConcept C74650414 @default.
- W1562641538 hasConcept C97355855 @default.
- W1562641538 hasConceptScore W1562641538C10390562 @default.
- W1562641538 hasConceptScore W1562641538C11413529 @default.
- W1562641538 hasConceptScore W1562641538C121332964 @default.
- W1562641538 hasConceptScore W1562641538C124017977 @default.
- W1562641538 hasConceptScore W1562641538C127090403 @default.
- W1562641538 hasConceptScore W1562641538C127313418 @default.
- W1562641538 hasConceptScore W1562641538C1276947 @default.
- W1562641538 hasConceptScore W1562641538C13280743 @default.
- W1562641538 hasConceptScore W1562641538C134306372 @default.
- W1562641538 hasConceptScore W1562641538C14257148 @default.
- W1562641538 hasConceptScore W1562641538C154945302 @default.
- W1562641538 hasConceptScore W1562641538C160121416 @default.
- W1562641538 hasConceptScore W1562641538C19269812 @default.
- W1562641538 hasConceptScore W1562641538C2776135515 @default.
- W1562641538 hasConceptScore W1562641538C31972630 @default.
- W1562641538 hasConceptScore W1562641538C33923547 @default.
- W1562641538 hasConceptScore W1562641538C3770464 @default.
- W1562641538 hasConceptScore W1562641538C41008148 @default.
- W1562641538 hasConceptScore W1562641538C47432892 @default.
- W1562641538 hasConceptScore W1562641538C74650414 @default.
- W1562641538 hasConceptScore W1562641538C97355855 @default.
- W1562641538 hasLocation W15626415381 @default.
- W1562641538 hasOpenAccess W1562641538 @default.
- W1562641538 hasPrimaryLocation W15626415381 @default.
- W1562641538 hasRelatedWork W1533580203 @default.
- W1562641538 hasRelatedWork W1570089119 @default.
- W1562641538 hasRelatedWork W1578723177 @default.
- W1562641538 hasRelatedWork W186852977 @default.
- W1562641538 hasRelatedWork W2010075129 @default.
- W1562641538 hasRelatedWork W2063965548 @default.
- W1562641538 hasRelatedWork W2086288613 @default.
- W1562641538 hasRelatedWork W2089569721 @default.
- W1562641538 hasRelatedWork W2154420993 @default.
- W1562641538 hasRelatedWork W2158127704 @default.
- W1562641538 hasRelatedWork W2165654434 @default.
- W1562641538 hasRelatedWork W2168955138 @default.
- W1562641538 hasRelatedWork W23142473 @default.
- W1562641538 hasRelatedWork W249885390 @default.
- W1562641538 hasRelatedWork W2603442191 @default.
- W1562641538 hasRelatedWork W271091655 @default.
- W1562641538 hasRelatedWork W3106701803 @default.
- W1562641538 hasRelatedWork W627326289 @default.
- W1562641538 hasRelatedWork W655201370 @default.
- W1562641538 hasRelatedWork W96191487 @default.
- W1562641538 isParatext "false" @default.
- W1562641538 isRetracted "false" @default.
- W1562641538 magId "1562641538" @default.
- W1562641538 workType "book" @default.