Matches in SemOpenAlex for { <https://semopenalex.org/work/W1564753804> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1564753804 endingPage "72" @default.
- W1564753804 startingPage "63" @default.
- W1564753804 abstract "The analysis of textual data may start by classifying words usinga predefined tag set. However, it is still a problem for natural language text understanding the assignment of part-of-speech tags to words in unrestricted text (called POS-tagging). Most part of current taggers require huge amounts of hand tagged text for training (in the order of 105 pretagged words): it requires linguistically highly trained man power for a highly repetitive and boring job, and the results obtained have no optimal quality. Moreover, when one wants to change to another text genre the same kind of problem must be faced again. Our proposal goes in another direction. By carefully combininga large lexicon with an efficient neural network based generator of taggers we can generate POS-taggers using no more than 104 hand corrected tagged words for training. This training tagged text size can be feasibly hand corrected. Experimental results are presented and discussed for the SUSANNE Corpus. Results in three additional different Portuguese corpora are also discussed. 96% precision rates are obtained when unknown words occur in the test set. 98% precision rates are obtained when every word in the test set is known." @default.
- W1564753804 created "2016-06-24" @default.
- W1564753804 creator A5000700188 @default.
- W1564753804 creator A5019773155 @default.
- W1564753804 date "2001-01-01" @default.
- W1564753804 modified "2023-10-17" @default.
- W1564753804 title "Tagging with Small Training Corpora" @default.
- W1564753804 cites W2046224275 @default.
- W1564753804 cites W2120770606 @default.
- W1564753804 doi "https://doi.org/10.1007/3-540-44816-0_7" @default.
- W1564753804 hasPublicationYear "2001" @default.
- W1564753804 type Work @default.
- W1564753804 sameAs 1564753804 @default.
- W1564753804 citedByCount "25" @default.
- W1564753804 countsByYear W15647538042012 @default.
- W1564753804 countsByYear W15647538042013 @default.
- W1564753804 countsByYear W15647538042014 @default.
- W1564753804 countsByYear W15647538042016 @default.
- W1564753804 countsByYear W15647538042022 @default.
- W1564753804 crossrefType "book-chapter" @default.
- W1564753804 hasAuthorship W1564753804A5000700188 @default.
- W1564753804 hasAuthorship W1564753804A5019773155 @default.
- W1564753804 hasConcept C121332964 @default.
- W1564753804 hasConcept C123406163 @default.
- W1564753804 hasConcept C138885662 @default.
- W1564753804 hasConcept C154945302 @default.
- W1564753804 hasConcept C163258240 @default.
- W1564753804 hasConcept C169903167 @default.
- W1564753804 hasConcept C177264268 @default.
- W1564753804 hasConcept C199360897 @default.
- W1564753804 hasConcept C204321447 @default.
- W1564753804 hasConcept C2778121359 @default.
- W1564753804 hasConcept C2780992000 @default.
- W1564753804 hasConcept C28490314 @default.
- W1564753804 hasConcept C35219183 @default.
- W1564753804 hasConcept C41008148 @default.
- W1564753804 hasConcept C41895202 @default.
- W1564753804 hasConcept C51632099 @default.
- W1564753804 hasConcept C62520636 @default.
- W1564753804 hasConcept C90805587 @default.
- W1564753804 hasConceptScore W1564753804C121332964 @default.
- W1564753804 hasConceptScore W1564753804C123406163 @default.
- W1564753804 hasConceptScore W1564753804C138885662 @default.
- W1564753804 hasConceptScore W1564753804C154945302 @default.
- W1564753804 hasConceptScore W1564753804C163258240 @default.
- W1564753804 hasConceptScore W1564753804C169903167 @default.
- W1564753804 hasConceptScore W1564753804C177264268 @default.
- W1564753804 hasConceptScore W1564753804C199360897 @default.
- W1564753804 hasConceptScore W1564753804C204321447 @default.
- W1564753804 hasConceptScore W1564753804C2778121359 @default.
- W1564753804 hasConceptScore W1564753804C2780992000 @default.
- W1564753804 hasConceptScore W1564753804C28490314 @default.
- W1564753804 hasConceptScore W1564753804C35219183 @default.
- W1564753804 hasConceptScore W1564753804C41008148 @default.
- W1564753804 hasConceptScore W1564753804C41895202 @default.
- W1564753804 hasConceptScore W1564753804C51632099 @default.
- W1564753804 hasConceptScore W1564753804C62520636 @default.
- W1564753804 hasConceptScore W1564753804C90805587 @default.
- W1564753804 hasLocation W15647538041 @default.
- W1564753804 hasOpenAccess W1564753804 @default.
- W1564753804 hasPrimaryLocation W15647538041 @default.
- W1564753804 hasRelatedWork W1561374464 @default.
- W1564753804 hasRelatedWork W1603756446 @default.
- W1564753804 hasRelatedWork W1979922945 @default.
- W1564753804 hasRelatedWork W2122691642 @default.
- W1564753804 hasRelatedWork W2129217837 @default.
- W1564753804 hasRelatedWork W2169160736 @default.
- W1564753804 hasRelatedWork W2296152660 @default.
- W1564753804 hasRelatedWork W2394602299 @default.
- W1564753804 hasRelatedWork W2888435257 @default.
- W1564753804 hasRelatedWork W3011677438 @default.
- W1564753804 isParatext "false" @default.
- W1564753804 isRetracted "false" @default.
- W1564753804 magId "1564753804" @default.
- W1564753804 workType "book-chapter" @default.