Matches in SemOpenAlex for { <https://semopenalex.org/work/W1565462809> ?p ?o ?g. }
- W1565462809 abstract "Although the forecasts of hurricane track have steadily improved during the past two decades, intensity forecasts remain unsatisfactory (Elsberry, 2005). Previous studies have shown that vortex structures can significantly affect the behavior of hurricane intensity (Ross & Kurihara, 1995; Willoughby & Black, 1996; Xiao et al., 2000). The initialization of hurricane vortex as well as its environment using an advanced data assimilation technique is a key procedure to improve the accuracy of hurricane forecasts and to extend lead-time for hurricane forecasts with increased certainty. Particularly, assimilation of the data in the vortex region deserves more scientific research and technical development. Assimilation of Doppler radar observations from coastal and aircraft Doppler radars in hurricane vortex initialization is of great interest to the weather service and research communities but with a lot of challenges (Liu et al., 1997; Marks et al., 1998; Xiao et al., 2000; 2006). The complexity comes from how we should establish the data assimilation system for hurricanes that are usually in the low latitude, compounded by a lack of data over the ocean and inadequate computer resources to resolve the inner core. From the several-year realtime hurricane forecasts using the Advanced-research Hurricane WRF (AHW) model (Davis et al., 2008; Xiao et al., 2009a; b), however, one conclusion is that an advanced analysis scheme has to be implemented for improved vortex initialization. Data assimilation is a process that incorporates observations into numerical model with consideration of both observational data and model background information. There are several data assimilation techniques that can be used for hurricane initialization. The fourdimensional variational (4D-Var) data assimilation (Courtier et al., 1994) and Ensemble Kalman filters (EnKF, Evensen, 1994) are two of the most advanced in algorithm formulation and technique design. 4D-Var employs a forecast model as a strong constraint in a least-squares fit problem (Lewis & Derber, 1985, Le Dimet & Talagrant, 1986, Thepaut & Courtier, 1991, Navon et al., 1992). It has an implicit update of the flow-dependent background field and the capability to assimilate data at the exact observation time. The 4DVar adjoint approach is an attractive assimilation technique. As a retrospective assimilation algorithm, it can derive the optimal time-trajectory fit to observational data, including nonsynoptic data (Xiao et al., 2002, Simmons & Hollingsworth, 2002). 4D-Var has been" @default.
- W1565462809 created "2016-06-24" @default.
- W1565462809 creator A5057830106 @default.
- W1565462809 date "2011-04-19" @default.
- W1565462809 modified "2023-10-01" @default.
- W1565462809 title "Improvements of Hurricane Forecast with Vortex Initialization using WRF Variational (WRF-Var) Data Assimilation" @default.
- W1565462809 cites W1548588257 @default.
- W1565462809 cites W1575291538 @default.
- W1565462809 cites W1966572771 @default.
- W1565462809 cites W1972809973 @default.
- W1565462809 cites W1980785126 @default.
- W1565462809 cites W1982803992 @default.
- W1565462809 cites W1984310153 @default.
- W1565462809 cites W1985773833 @default.
- W1565462809 cites W2001351897 @default.
- W1565462809 cites W2005825266 @default.
- W1565462809 cites W2006757093 @default.
- W1565462809 cites W2007680104 @default.
- W1565462809 cites W2007801834 @default.
- W1565462809 cites W2008072410 @default.
- W1565462809 cites W2012619651 @default.
- W1565462809 cites W2016318534 @default.
- W1565462809 cites W2021011909 @default.
- W1565462809 cites W2030172227 @default.
- W1565462809 cites W2034115633 @default.
- W1565462809 cites W2038418888 @default.
- W1565462809 cites W2041863660 @default.
- W1565462809 cites W2046976544 @default.
- W1565462809 cites W2055089747 @default.
- W1565462809 cites W2057545873 @default.
- W1565462809 cites W2059633880 @default.
- W1565462809 cites W2078031695 @default.
- W1565462809 cites W2079702740 @default.
- W1565462809 cites W2095135227 @default.
- W1565462809 cites W2106064883 @default.
- W1565462809 cites W2111631326 @default.
- W1565462809 cites W2121685656 @default.
- W1565462809 cites W2127672953 @default.
- W1565462809 cites W2127955663 @default.
- W1565462809 cites W2128931495 @default.
- W1565462809 cites W2139004160 @default.
- W1565462809 cites W2139737873 @default.
- W1565462809 cites W2147119488 @default.
- W1565462809 cites W2148703247 @default.
- W1565462809 cites W2152984210 @default.
- W1565462809 cites W2157098139 @default.
- W1565462809 cites W2161358768 @default.
- W1565462809 cites W2162870936 @default.
- W1565462809 cites W2168102396 @default.
- W1565462809 cites W2169562507 @default.
- W1565462809 cites W2172819965 @default.
- W1565462809 cites W2173190456 @default.
- W1565462809 cites W2173431567 @default.
- W1565462809 cites W2173770184 @default.
- W1565462809 cites W2175330979 @default.
- W1565462809 cites W2176150232 @default.
- W1565462809 cites W2177451271 @default.
- W1565462809 cites W2179584279 @default.
- W1565462809 cites W2179912439 @default.
- W1565462809 cites W2915783575 @default.
- W1565462809 cites W3150250345 @default.
- W1565462809 doi "https://doi.org/10.5772/13930" @default.
- W1565462809 hasPublicationYear "2011" @default.
- W1565462809 type Work @default.
- W1565462809 sameAs 1565462809 @default.
- W1565462809 citedByCount "0" @default.
- W1565462809 crossrefType "book-chapter" @default.
- W1565462809 hasAuthorship W1565462809A5057830106 @default.
- W1565462809 hasBestOaLocation W15654628091 @default.
- W1565462809 hasConcept C114466953 @default.
- W1565462809 hasConcept C127313418 @default.
- W1565462809 hasConcept C133204551 @default.
- W1565462809 hasConcept C140820882 @default.
- W1565462809 hasConcept C153294291 @default.
- W1565462809 hasConcept C199360897 @default.
- W1565462809 hasConcept C205649164 @default.
- W1565462809 hasConcept C24552861 @default.
- W1565462809 hasConcept C2778559676 @default.
- W1565462809 hasConcept C29141058 @default.
- W1565462809 hasConcept C39432304 @default.
- W1565462809 hasConcept C41008148 @default.
- W1565462809 hasConcept C49204034 @default.
- W1565462809 hasConcept C554190296 @default.
- W1565462809 hasConcept C76155785 @default.
- W1565462809 hasConceptScore W1565462809C114466953 @default.
- W1565462809 hasConceptScore W1565462809C127313418 @default.
- W1565462809 hasConceptScore W1565462809C133204551 @default.
- W1565462809 hasConceptScore W1565462809C140820882 @default.
- W1565462809 hasConceptScore W1565462809C153294291 @default.
- W1565462809 hasConceptScore W1565462809C199360897 @default.
- W1565462809 hasConceptScore W1565462809C205649164 @default.
- W1565462809 hasConceptScore W1565462809C24552861 @default.
- W1565462809 hasConceptScore W1565462809C2778559676 @default.
- W1565462809 hasConceptScore W1565462809C29141058 @default.
- W1565462809 hasConceptScore W1565462809C39432304 @default.
- W1565462809 hasConceptScore W1565462809C41008148 @default.
- W1565462809 hasConceptScore W1565462809C49204034 @default.
- W1565462809 hasConceptScore W1565462809C554190296 @default.
- W1565462809 hasConceptScore W1565462809C76155785 @default.
- W1565462809 hasLocation W15654628091 @default.