Matches in SemOpenAlex for { <https://semopenalex.org/work/W1566003438> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W1566003438 abstract "The reach-through effect representing close up the space charge regions of two adjacent oppositely biased junctions leads to a sharp exponential increase in current from the bias voltage (Sze et al., 1971). Therefore, this effect was originally found in transistor structures was undesirable. But in the further development of electronics, this effect has found many applications in electronic devices. For example, in barrier injection transit-time diodes as dccurrent bias (Chu & Sze, 1973; Coleman & Sze, 1971; Presting et al., 1994), in static induction transistors as an extra advantageous current to increase the transconductance of the transistor (Nishizawa & Yamamoto, 1978), in low-voltage transient voltage suppressors as a clamp device (de Cogan, 1977; King et al., 1996; Urresti et al., 2005), in JFET optical detectors as a reset mechanism (Shannon & Lohstroh, 1974, as cited in Lohstroh et al., 1981), in IGFET tetrodes as a modulated current flow (Richman, 1969, as cited in Lohstroh et al., 1981), in punch-through insulated gate bipolar transistors (Iwamoto et al., 2002), in gate-fieldcontrolled barrier-injection transit-time transistors and in light injection-controlled punchthrough transistors (Esener & Lee, 1985). Due to the predominance the diffusion processes in structures with reach-through effect (Lohstroh et al., 1981; Sze et al., 1971) characters of the generation-recombination processes in the space charge regions in these structures, as well as non-stationary processes caused by extraction of the majority carriers and formation of the uncompensated space charge in the base layer are still remain unexplored. To prevent the diffusion processes three-barrier structure was developed, in which the flow of both types of carriers in the structure is limited by rather high potential barriers (Karimov, 1991, 1994, 2002). This allowed us to research in such structures the generation-recombination processes in the space charge regions after reach-through, as well as the influence of illumination on these processes. In these structures is found the internal photocurrent gain (Karimov & Karimova, 2003; Karimov & Yodgorova, 2010), which can not be associated with an avalanche or injection processes. Thus, this section is devoted to disclosing the mechanisms of charge transport and the nature of the internal photocurrent gain in multibarrier reach-through-photodiode structures. In this section, is given a brief overview of multibarrier photodiode structures, as well as the results of a comprehensive research of the dark and light characteristics of multibarrier reachthrough-photodiode structures. On the basis of which is proposed model, which explains the mechanism of charge transport and internal photocurrent gain, as well as some future trends." @default.
- W1566003438 created "2016-06-24" @default.
- W1566003438 creator A5013981127 @default.
- W1566003438 creator A5024590770 @default.
- W1566003438 creator A5091422220 @default.
- W1566003438 date "2011-07-29" @default.
- W1566003438 modified "2023-09-23" @default.
- W1566003438 title "Physical Principles of Photocurrent Generation in Multi-Barrier Punch-Through-Structures" @default.
- W1566003438 cites W1611779831 @default.
- W1566003438 cites W1880174894 @default.
- W1566003438 cites W1963547923 @default.
- W1566003438 cites W1973107661 @default.
- W1566003438 cites W1987982520 @default.
- W1566003438 cites W1996060938 @default.
- W1566003438 cites W2015051578 @default.
- W1566003438 cites W2018668129 @default.
- W1566003438 cites W2052427771 @default.
- W1566003438 cites W2056534164 @default.
- W1566003438 cites W2065394548 @default.
- W1566003438 cites W2080827501 @default.
- W1566003438 cites W2091502668 @default.
- W1566003438 cites W2125445324 @default.
- W1566003438 cites W2146370384 @default.
- W1566003438 cites W2163322433 @default.
- W1566003438 cites W3147289055 @default.
- W1566003438 doi "https://doi.org/10.5772/19332" @default.
- W1566003438 hasPublicationYear "2011" @default.
- W1566003438 type Work @default.
- W1566003438 sameAs 1566003438 @default.
- W1566003438 citedByCount "1" @default.
- W1566003438 countsByYear W15660034382021 @default.
- W1566003438 crossrefType "book-chapter" @default.
- W1566003438 hasAuthorship W1566003438A5013981127 @default.
- W1566003438 hasAuthorship W1566003438A5024590770 @default.
- W1566003438 hasAuthorship W1566003438A5091422220 @default.
- W1566003438 hasBestOaLocation W15660034381 @default.
- W1566003438 hasConcept C127413603 @default.
- W1566003438 hasConcept C192562407 @default.
- W1566003438 hasConcept C2779845233 @default.
- W1566003438 hasConcept C49040817 @default.
- W1566003438 hasConcept C61696701 @default.
- W1566003438 hasConceptScore W1566003438C127413603 @default.
- W1566003438 hasConceptScore W1566003438C192562407 @default.
- W1566003438 hasConceptScore W1566003438C2779845233 @default.
- W1566003438 hasConceptScore W1566003438C49040817 @default.
- W1566003438 hasConceptScore W1566003438C61696701 @default.
- W1566003438 hasLocation W15660034381 @default.
- W1566003438 hasLocation W15660034382 @default.
- W1566003438 hasOpenAccess W1566003438 @default.
- W1566003438 hasPrimaryLocation W15660034381 @default.
- W1566003438 hasRelatedWork W1980709495 @default.
- W1566003438 hasRelatedWork W2027791172 @default.
- W1566003438 hasRelatedWork W2055378928 @default.
- W1566003438 hasRelatedWork W2058676402 @default.
- W1566003438 hasRelatedWork W2067385249 @default.
- W1566003438 hasRelatedWork W2399397734 @default.
- W1566003438 hasRelatedWork W2902546961 @default.
- W1566003438 hasRelatedWork W2953592506 @default.
- W1566003438 hasRelatedWork W3184800639 @default.
- W1566003438 hasRelatedWork W4237468622 @default.
- W1566003438 isParatext "false" @default.
- W1566003438 isRetracted "false" @default.
- W1566003438 magId "1566003438" @default.
- W1566003438 workType "book-chapter" @default.