Matches in SemOpenAlex for { <https://semopenalex.org/work/W1566144857> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1566144857 abstract "A probability measure ν on a product space X × Y is said to be bistochastic with respect to measures λ on X and μ on Y if the marginals π1(ν) and π2(μ) are exactly λ and μ. A solution is presented to a problem of Arveson about sets which are of measure zero for all such ν. If (X,F , λ) and (Y,G, μ) are probability spaces, we shall say that a probability measure σ on the product σ-algebra F⊗G is bistochastic (with respect to λ and μ), and write σ ∈ Bist(λ, μ) if σ has λ and μ as its marginal measures π1(σ) and π2(σ), that is to say, if π1(σ)(A) = σ(A × Y ) = λ(A) and π2(σ)(B) = σ(X × B) = μ(B) for all A ∈ F and B ∈ G. In the course of his study of operator algebras associated with commutative lattices of self-adjoint projections on Hilbert space, Arveson [1] investigated the following problem: Given probability spaces (X,F , λ) and (Y,G, μ), and a subset E of X × Y , when is E a null set for all σ ∈ Bist(λ, μ)? It is clear that a sufficient condition for this to be the case is that there exist F ∈ F , G ∈ G with λ(F ) = μ(G) = 0 and E ⊆ (F × Y ) ∪ (X × G); sets E of this type are said to be “marginally null”. Arveson showed that a converse to this statement is valid under certain circumstances: When X and Y are compact Hausdorff spaces and λ, μ are regular Borel probability measures, then a closed subset of X × Y which is a null set for all σ ∈ Bist(λ, μ) is necessarily marginally null [1, Theorem 1.4.2]. The same conclusion holds if (X,F) and (Y,G) are standard Borel spaces and E is the complement in X × Y of a countable union of Borel rectangles [1, Theorem 1.4.3]. We shall show that in both of these cases the result may be extended to a wider class of sets E. In fact, we shall give a more precise result, expressing in terms of the measures λ and μ the supremum of σ(E) taken over all bistochastic σ. This may be viewed as an extension of a theorem of Sudakov [7, Theorem 9]. We use fairly standard measure-theoretic terminology. A subset of a Cartesian product X × Y is said to be a rectangle if it has the form A× B with A ⊆ X and B ⊆ Y . The product σ-algebra F ⊗ G of σ-algebras F on X and G on Y is the σ-algebra generated by all rectangles A×B (A ∈ F , B ∈ G). If ν is a measure on a σ-algebra containing F ⊗ G the marginals are the measures defined on F and G by π1(ν)(A) = ν(A × Y ), π2(ν)(B) = ν(X × B). In the topological theory we are concerned only with finite positive measures defined on the Borel σ-algebra B(X) Received by the editors August 29, 1994. 1991 Mathematics Subject Classification. Primary 28A35; Secondary 28A12, 47D25. c ©1996 American Mathematical Society" @default.
- W1566144857 created "2016-06-24" @default.
- W1566144857 creator A5068161021 @default.
- W1566144857 creator A5087437610 @default.
- W1566144857 date "1996-01-01" @default.
- W1566144857 modified "2023-09-30" @default.
- W1566144857 title "On a measure-theoretic problem of Arveson" @default.
- W1566144857 cites W1529647686 @default.
- W1566144857 cites W1552064164 @default.
- W1566144857 cites W1993019104 @default.
- W1566144857 cites W1995049977 @default.
- W1566144857 cites W2033810643 @default.
- W1566144857 cites W2063634434 @default.
- W1566144857 cites W2531926908 @default.
- W1566144857 cites W45884410 @default.
- W1566144857 doi "https://doi.org/10.1090/s0002-9939-96-03076-6" @default.
- W1566144857 hasPublicationYear "1996" @default.
- W1566144857 type Work @default.
- W1566144857 sameAs 1566144857 @default.
- W1566144857 citedByCount "10" @default.
- W1566144857 countsByYear W15661448572012 @default.
- W1566144857 countsByYear W15661448572019 @default.
- W1566144857 countsByYear W15661448572023 @default.
- W1566144857 crossrefType "journal-article" @default.
- W1566144857 hasAuthorship W1566144857A5068161021 @default.
- W1566144857 hasAuthorship W1566144857A5087437610 @default.
- W1566144857 hasBestOaLocation W15661448571 @default.
- W1566144857 hasConcept C114614502 @default.
- W1566144857 hasConcept C118615104 @default.
- W1566144857 hasConcept C138885662 @default.
- W1566144857 hasConcept C177264268 @default.
- W1566144857 hasConcept C183778304 @default.
- W1566144857 hasConcept C191399826 @default.
- W1566144857 hasConcept C199360897 @default.
- W1566144857 hasConcept C202444582 @default.
- W1566144857 hasConcept C203763787 @default.
- W1566144857 hasConcept C21031990 @default.
- W1566144857 hasConcept C2524010 @default.
- W1566144857 hasConcept C2778572836 @default.
- W1566144857 hasConcept C2780009758 @default.
- W1566144857 hasConcept C33923547 @default.
- W1566144857 hasConcept C41008148 @default.
- W1566144857 hasConcept C41895202 @default.
- W1566144857 hasConcept C55375708 @default.
- W1566144857 hasConcept C55606962 @default.
- W1566144857 hasConcept C62799726 @default.
- W1566144857 hasConcept C77088390 @default.
- W1566144857 hasConcept C90673727 @default.
- W1566144857 hasConceptScore W1566144857C114614502 @default.
- W1566144857 hasConceptScore W1566144857C118615104 @default.
- W1566144857 hasConceptScore W1566144857C138885662 @default.
- W1566144857 hasConceptScore W1566144857C177264268 @default.
- W1566144857 hasConceptScore W1566144857C183778304 @default.
- W1566144857 hasConceptScore W1566144857C191399826 @default.
- W1566144857 hasConceptScore W1566144857C199360897 @default.
- W1566144857 hasConceptScore W1566144857C202444582 @default.
- W1566144857 hasConceptScore W1566144857C203763787 @default.
- W1566144857 hasConceptScore W1566144857C21031990 @default.
- W1566144857 hasConceptScore W1566144857C2524010 @default.
- W1566144857 hasConceptScore W1566144857C2778572836 @default.
- W1566144857 hasConceptScore W1566144857C2780009758 @default.
- W1566144857 hasConceptScore W1566144857C33923547 @default.
- W1566144857 hasConceptScore W1566144857C41008148 @default.
- W1566144857 hasConceptScore W1566144857C41895202 @default.
- W1566144857 hasConceptScore W1566144857C55375708 @default.
- W1566144857 hasConceptScore W1566144857C55606962 @default.
- W1566144857 hasConceptScore W1566144857C62799726 @default.
- W1566144857 hasConceptScore W1566144857C77088390 @default.
- W1566144857 hasConceptScore W1566144857C90673727 @default.
- W1566144857 hasLocation W15661448571 @default.
- W1566144857 hasOpenAccess W1566144857 @default.
- W1566144857 hasPrimaryLocation W15661448571 @default.
- W1566144857 hasRelatedWork W1916225159 @default.
- W1566144857 hasRelatedWork W1975525629 @default.
- W1566144857 hasRelatedWork W1980169731 @default.
- W1566144857 hasRelatedWork W1994405742 @default.
- W1566144857 hasRelatedWork W2000360939 @default.
- W1566144857 hasRelatedWork W2010614566 @default.
- W1566144857 hasRelatedWork W2017420615 @default.
- W1566144857 hasRelatedWork W2039697992 @default.
- W1566144857 hasRelatedWork W2042515545 @default.
- W1566144857 hasRelatedWork W2063634434 @default.
- W1566144857 hasRelatedWork W2069719500 @default.
- W1566144857 hasRelatedWork W2070043753 @default.
- W1566144857 hasRelatedWork W2090593718 @default.
- W1566144857 hasRelatedWork W2094673677 @default.
- W1566144857 hasRelatedWork W2106295718 @default.
- W1566144857 hasRelatedWork W2113944662 @default.
- W1566144857 hasRelatedWork W2128676538 @default.
- W1566144857 hasRelatedWork W2803957335 @default.
- W1566144857 hasRelatedWork W40679722 @default.
- W1566144857 hasRelatedWork W890030395 @default.
- W1566144857 isParatext "false" @default.
- W1566144857 isRetracted "false" @default.
- W1566144857 magId "1566144857" @default.
- W1566144857 workType "article" @default.