Matches in SemOpenAlex for { <https://semopenalex.org/work/W1566332080> ?p ?o ?g. }
- W1566332080 abstract "The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$bar{x}$, PMLG5mm$bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLGm$bar{x}$ during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the 1H resolution during t1 evolution in the traditional, 13C detected HETCOR scheme. Two naturally abundant solids, tripeptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (f-MLF-OH) and brown coal, with well ordered and highly disordered structures, respectively, are studied to confirm the capabilities of these techniques. Concomitantly, a simple optimization of 1H homonuclear dipolar decoupling at MAS rates exceeding 10 kHz was developed (Chapter 4). The fine-tuned decoupling efficiency can be obtained by minimizing the signal loss due to transverse relaxation in a simple spin-echo experiment, using directly the sample of interest. The excellent agreement between observed decoupling pattern and earlier theoretical predictions confirmed the utility of this strategy. The properties of naturally abundant surface-bound fluorocarbon groups in mesoporous silica nanoparticles (MSNs) were investigated by the above-mentioned multidimensional solid-state NMR experiments and theoretical modeling (Chapter 5). Two conformations of (pentafluorophenyl)propyl groups (abbreviated as PFP) were determined as PFP-prone and PFP-upright, whose aromatic rings are located above the siloxane bridges and in roughly upright position, respectively. Several 1D and 2D NMR techniques were implemented in the characterizations, including indirectly detected 1H{l_brace}13C{r_brace} and 19F{l_brace}13C{r_brace} 2D HETCOR, Carr-Purcell-Meiboom-Gill (CPMG) assisted 29Si direct polarization and 29Si19F 2D experiments, 2D double-quantum (DQ) 19F MAS NMR spectra and spin-echo measurements. Furthermore, conformational details of two types of PFP were confirmed by theoretical calculation, operated by Dr. Takeshi Kobayashi. Finally, the arrangement of two surfactants, cetyltrimetylammoium bromide (CTAB) and cetylpyridinium bromide (CPB), mixed inside the MSN pores, was studied by solid-state NMR (Chapter 6). By analyzing the 1H-1H DQMAS and NOESY correlation spectra, the CTAB and CPB molecules were shown to co-exist inside the pores without forming significant monocomponent domains. A 'folded-over' conformation of CPB headgroups was proposed according to the results from 1H-29Si 2D HETCOR." @default.
- W1566332080 created "2016-06-24" @default.
- W1566332080 creator A5025257207 @default.
- W1566332080 date "2011-01-01" @default.
- W1566332080 modified "2023-09-28" @default.
- W1566332080 title "Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning" @default.
- W1566332080 cites W1519829138 @default.
- W1566332080 cites W1936186646 @default.
- W1566332080 cites W1963553060 @default.
- W1566332080 cites W1963802540 @default.
- W1566332080 cites W1969372343 @default.
- W1566332080 cites W1969381799 @default.
- W1566332080 cites W1969862727 @default.
- W1566332080 cites W1970995940 @default.
- W1566332080 cites W1972667660 @default.
- W1566332080 cites W1976741396 @default.
- W1566332080 cites W1977013057 @default.
- W1566332080 cites W1977891118 @default.
- W1566332080 cites W1978941900 @default.
- W1566332080 cites W1982784029 @default.
- W1566332080 cites W1983530551 @default.
- W1566332080 cites W1983718136 @default.
- W1566332080 cites W1984442218 @default.
- W1566332080 cites W1986073615 @default.
- W1566332080 cites W1986082733 @default.
- W1566332080 cites W1986222264 @default.
- W1566332080 cites W1986798456 @default.
- W1566332080 cites W1987553603 @default.
- W1566332080 cites W1987661658 @default.
- W1566332080 cites W1987772580 @default.
- W1566332080 cites W1988986288 @default.
- W1566332080 cites W1989947146 @default.
- W1566332080 cites W1989961240 @default.
- W1566332080 cites W1990417072 @default.
- W1566332080 cites W1991332226 @default.
- W1566332080 cites W1991693135 @default.
- W1566332080 cites W1993714823 @default.
- W1566332080 cites W1995041236 @default.
- W1566332080 cites W1996337568 @default.
- W1566332080 cites W1997698933 @default.
- W1566332080 cites W1998781183 @default.
- W1566332080 cites W1998889046 @default.
- W1566332080 cites W2002352328 @default.
- W1566332080 cites W2004744694 @default.
- W1566332080 cites W2006608901 @default.
- W1566332080 cites W2006923680 @default.
- W1566332080 cites W2008657337 @default.
- W1566332080 cites W2009938064 @default.
- W1566332080 cites W2016035832 @default.
- W1566332080 cites W2016702203 @default.
- W1566332080 cites W2017038392 @default.
- W1566332080 cites W2017289302 @default.
- W1566332080 cites W2018097888 @default.
- W1566332080 cites W2018830150 @default.
- W1566332080 cites W2020082424 @default.
- W1566332080 cites W2020720377 @default.
- W1566332080 cites W2022950330 @default.
- W1566332080 cites W2024487526 @default.
- W1566332080 cites W2024832918 @default.
- W1566332080 cites W2025976880 @default.
- W1566332080 cites W2027747661 @default.
- W1566332080 cites W2028598535 @default.
- W1566332080 cites W2028798957 @default.
- W1566332080 cites W2029324905 @default.
- W1566332080 cites W2029561831 @default.
- W1566332080 cites W2031303046 @default.
- W1566332080 cites W2031322636 @default.
- W1566332080 cites W2032814418 @default.
- W1566332080 cites W2033376523 @default.
- W1566332080 cites W2037212076 @default.
- W1566332080 cites W2038369267 @default.
- W1566332080 cites W2038491488 @default.
- W1566332080 cites W2039877652 @default.
- W1566332080 cites W2040132914 @default.
- W1566332080 cites W2041471035 @default.
- W1566332080 cites W2042570188 @default.
- W1566332080 cites W2042602209 @default.
- W1566332080 cites W2042705894 @default.
- W1566332080 cites W2044174769 @default.
- W1566332080 cites W2047552881 @default.
- W1566332080 cites W2048500440 @default.
- W1566332080 cites W2049619433 @default.
- W1566332080 cites W2052665739 @default.
- W1566332080 cites W2053813417 @default.
- W1566332080 cites W2055516309 @default.
- W1566332080 cites W2055784740 @default.
- W1566332080 cites W2057208105 @default.
- W1566332080 cites W2057520291 @default.
- W1566332080 cites W2058109052 @default.
- W1566332080 cites W2058788449 @default.
- W1566332080 cites W2059505019 @default.
- W1566332080 cites W2062485445 @default.
- W1566332080 cites W2067148498 @default.
- W1566332080 cites W2068648751 @default.
- W1566332080 cites W2069799411 @default.
- W1566332080 cites W2071674986 @default.
- W1566332080 cites W2072557831 @default.
- W1566332080 cites W2074038021 @default.
- W1566332080 cites W2075285513 @default.
- W1566332080 cites W2077569545 @default.