Matches in SemOpenAlex for { <https://semopenalex.org/work/W1566332670> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1566332670 abstract "Fractile Graphical Analysis was proposed by Prashanta Chandra Mahalanobis (Mahalanobis, 1960) in a series of papers and seminars as a method for comparing two distributions controlling for the rank of a covariate through groups. Mahalanobis used a heuristic method of approximating the standard error of the dependent variable using graphs from two independently selected subsamples. We revisit the technique of graphical analysis with some historical perspectives. We a propose a new non-parametric regression method called Fractile Regression where we condition on the ranks of the covariate, and compare it with existing regression techniques. We apply this method to predict mutual fund inow distributions after conditioning on returns and to wage distribution after conditioning for educational quali cations. Finally, we investigate large and nite sample properties of regression coe¢ cients both analytically and through Monte Carlo simulations. JEL Classi cation: C12, C14, C52 Keywords: Non-parametric regression, distribution comparison, Fractile Graphical Analysis, rank regression, quantile regression, Gini coe¢ cient, concentration curves, simulation methods, mutual fund inow 1 Motivation and Background Fractile Graphical Analysis was proposed by Prashanta Chandra Mahalanobis (Mahalanobis, 1961) in a series of papers and seminars as a method to take into account the e¤ect of a covariate while comparing two distributions. Unlike the parametric method of linear least squares regression analysis Mahalanobis proposed a more non-parametric way of controlling the covariates (possibly, more than one) using the ranks of fractile groups (possibly unequal). The method provides a graphical tool for comparing both complete distributions of the variable of interest (like income or expenditure) for all values of the covariate as well as speci c fractiles. Mahalanobis used a visual method of approximating the standard error of the income at all the fractiles of the covariate for the same graph by taking two independently selected and obtaining a graph for each of the subsamples besides the combined sample. The method proposed by Mahalanobis for estimating the error area of a graph was later hailed as a precursor to the genesis of latter day bootstrap methodology (Efron 1979a,b; Hall, 2003). FGA can used to test whether two distributions of the graphs of two populations are di¤erent by looking at the Area of Separation between the two graphs. It is worth mentioning that the graphs are a more general version of the Lorenz concentration curve and more speci c concentration curves where we look at the cumulative relative sums of the levels of the variable of interest (for example expenditure or income) in place of the actual values. Hence, FGA can be used to compare the error in estimating Lorenz curves or speci c concentration curves. The main contribution of the Fractile Graphical Analysis were twofold, rst it provided a method of using interpenetrating network of subsamples to estimate the error region and perform a simple graphical test of the whole or a range of values of the fractiles where the distributions are di¤erent (see the discussion in Swami, 1963 and Iyengar and Bhattacharya, 1965). The point raised in Swami(1963) that FGA was a novel way of looking at the age-old problem of concentration curves and Gini Coe¢ cient is also misleading as FGA provides a method of comparison" @default.
- W1566332670 created "2016-06-24" @default.
- W1566332670 creator A5009718344 @default.
- W1566332670 date "2005-01-01" @default.
- W1566332670 modified "2023-09-27" @default.
- W1566332670 title "Fractile Regression and Its Applications in Economics and Finance" @default.
- W1566332670 cites W1573604546 @default.
- W1566332670 cites W1977373364 @default.
- W1566332670 cites W1983553701 @default.
- W1566332670 cites W1985258161 @default.
- W1566332670 cites W1994497495 @default.
- W1566332670 cites W2000475131 @default.
- W1566332670 cites W2008149271 @default.
- W1566332670 cites W2010690057 @default.
- W1566332670 cites W2024757120 @default.
- W1566332670 cites W2027956056 @default.
- W1566332670 cites W2032369139 @default.
- W1566332670 cites W2059507684 @default.
- W1566332670 cites W2063641214 @default.
- W1566332670 cites W2100891830 @default.
- W1566332670 cites W2117897510 @default.
- W1566332670 cites W2312282821 @default.
- W1566332670 cites W2320354016 @default.
- W1566332670 cites W2333196616 @default.
- W1566332670 cites W2334276150 @default.
- W1566332670 cites W2610210104 @default.
- W1566332670 cites W2944982073 @default.
- W1566332670 hasPublicationYear "2005" @default.
- W1566332670 type Work @default.
- W1566332670 sameAs 1566332670 @default.
- W1566332670 citedByCount "0" @default.
- W1566332670 crossrefType "journal-article" @default.
- W1566332670 hasAuthorship W1566332670A5009718344 @default.
- W1566332670 hasConcept C105795698 @default.
- W1566332670 hasConcept C114614502 @default.
- W1566332670 hasConcept C117251300 @default.
- W1566332670 hasConcept C119043178 @default.
- W1566332670 hasConcept C120068334 @default.
- W1566332670 hasConcept C134306372 @default.
- W1566332670 hasConcept C149782125 @default.
- W1566332670 hasConcept C152877465 @default.
- W1566332670 hasConcept C164226766 @default.
- W1566332670 hasConcept C182365436 @default.
- W1566332670 hasConcept C1921717 @default.
- W1566332670 hasConcept C33923547 @default.
- W1566332670 hasConcept C44882253 @default.
- W1566332670 hasConcept C48921125 @default.
- W1566332670 hasConcept C63817138 @default.
- W1566332670 hasConcept C83546350 @default.
- W1566332670 hasConceptScore W1566332670C105795698 @default.
- W1566332670 hasConceptScore W1566332670C114614502 @default.
- W1566332670 hasConceptScore W1566332670C117251300 @default.
- W1566332670 hasConceptScore W1566332670C119043178 @default.
- W1566332670 hasConceptScore W1566332670C120068334 @default.
- W1566332670 hasConceptScore W1566332670C134306372 @default.
- W1566332670 hasConceptScore W1566332670C149782125 @default.
- W1566332670 hasConceptScore W1566332670C152877465 @default.
- W1566332670 hasConceptScore W1566332670C164226766 @default.
- W1566332670 hasConceptScore W1566332670C182365436 @default.
- W1566332670 hasConceptScore W1566332670C1921717 @default.
- W1566332670 hasConceptScore W1566332670C33923547 @default.
- W1566332670 hasConceptScore W1566332670C44882253 @default.
- W1566332670 hasConceptScore W1566332670C48921125 @default.
- W1566332670 hasConceptScore W1566332670C63817138 @default.
- W1566332670 hasConceptScore W1566332670C83546350 @default.
- W1566332670 hasLocation W15663326701 @default.
- W1566332670 hasOpenAccess W1566332670 @default.
- W1566332670 hasPrimaryLocation W15663326701 @default.
- W1566332670 hasRelatedWork W1513438292 @default.
- W1566332670 hasRelatedWork W1992043218 @default.
- W1566332670 hasRelatedWork W2053319317 @default.
- W1566332670 hasRelatedWork W2105004777 @default.
- W1566332670 hasRelatedWork W2184042765 @default.
- W1566332670 hasRelatedWork W2312325536 @default.
- W1566332670 hasRelatedWork W2371135407 @default.
- W1566332670 hasRelatedWork W2467643962 @default.
- W1566332670 hasRelatedWork W2581769068 @default.
- W1566332670 hasRelatedWork W2750535592 @default.
- W1566332670 hasRelatedWork W2772744298 @default.
- W1566332670 hasRelatedWork W2785931660 @default.
- W1566332670 hasRelatedWork W2923344200 @default.
- W1566332670 hasRelatedWork W2962983230 @default.
- W1566332670 hasRelatedWork W3125686849 @default.
- W1566332670 hasRelatedWork W3126366908 @default.
- W1566332670 hasRelatedWork W3199577187 @default.
- W1566332670 hasRelatedWork W628914316 @default.
- W1566332670 hasRelatedWork W780323257 @default.
- W1566332670 hasRelatedWork W562170346 @default.
- W1566332670 isParatext "false" @default.
- W1566332670 isRetracted "false" @default.
- W1566332670 magId "1566332670" @default.
- W1566332670 workType "article" @default.