Matches in SemOpenAlex for { <https://semopenalex.org/work/W1566398300> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W1566398300 endingPage "1165" @default.
- W1566398300 startingPage "1156" @default.
- W1566398300 abstract "A k-list-assignment for a graph G assigns to each vertex v of G a list L(v) of admissible colors, where |L(v)| ≥ k. A graph is k-list-colorable (or k-choosable) if it can be properly colored from the lists for every k-list-assignment.We prove the following conjecture posed by Thomassen in 1994: There are only finitely many list-color-critical graphs with all lists of cardinality at least 5 on any fixed surface. This generalizes the well-known result of Thomassen on the usual graph coloring case. We use this theorem and specific parts of its proof to resolve the complexity status of the following problem about k-list-coloring graphs on a fixed surface S, where k is a fixed positive integer.Input: A graph G embedded in the surface S.Question: Is G k-choosable? If not, provide a certificate (a list-color-critical subgraph and the corresponding k-list-assignment).The cases k = 3, 4 are known to be NP-hard (actually even Πp2-complete), and the cases k = 1, 2 are easy. Our main results imply that the problem is tractable for every k ≥ 5. In fact, together with our recent algorithmic result, we are able to solve it in linear time when k ≥ 5. Our proof yields even more: if the input graph is k-list-colorable, then for any k-list-assignment L, we can construct an L-coloring of G in linear time. This generalizes the well-known linear-time algorithms for planar graphs by Nishizeki and Chiba (for 5-coloring), and Thomassen (for 5-list-coloring).We also give a polynomial-time algorithm to resolve the following question:Input: A graph G in the surface S, and a k-list-assignment L, where k ≥ 5.Question: Does G admit an L-coloring? If not, provide a certificate for this. If yes, then return an L-coloring.If the graph G is k-list-colorable, then our first result gives a linear time solution. However, the second problem is more general, since it provides a coloring (or a small obstruction) for an arbitrary graph in S.We also use our main theorem to prove another conjecture that was proposed recently by Thomassen: For every fixed surface S, there exists a positive constant c such that every 5-list-colorable graph with n vertices embedded on S, has at least c · 2n distinct 5-list-colorings for every 5-list-assignment for G. Thomassen himself proved that this conjecture holds for usual 5-colorings.In addition to all these results, we also made partial progress towards a conjecture of Albertson concerning coloring extensions and a progress on similar questions for triangle-free graphs and graphs of larger girth." @default.
- W1566398300 created "2016-06-24" @default.
- W1566398300 creator A5005993212 @default.
- W1566398300 creator A5008961593 @default.
- W1566398300 date "2009-01-04" @default.
- W1566398300 modified "2023-09-26" @default.
- W1566398300 title "List-color-critical graphs on a fixed surface" @default.
- W1566398300 cites W1598730037 @default.
- W1566398300 cites W1830275774 @default.
- W1566398300 cites W193938304 @default.
- W1566398300 cites W1968544309 @default.
- W1566398300 cites W1969557632 @default.
- W1566398300 cites W1978313715 @default.
- W1566398300 cites W1985316243 @default.
- W1566398300 cites W1986798547 @default.
- W1566398300 cites W2003311624 @default.
- W1566398300 cites W2004922196 @default.
- W1566398300 cites W2024931493 @default.
- W1566398300 cites W2028037658 @default.
- W1566398300 cites W2045237424 @default.
- W1566398300 cites W2047109885 @default.
- W1566398300 cites W2047871605 @default.
- W1566398300 cites W2055443873 @default.
- W1566398300 cites W2071623897 @default.
- W1566398300 cites W2089023036 @default.
- W1566398300 cites W2092904196 @default.
- W1566398300 cites W2131433460 @default.
- W1566398300 cites W2148360835 @default.
- W1566398300 cites W2154119795 @default.
- W1566398300 cites W2156678756 @default.
- W1566398300 cites W2161439427 @default.
- W1566398300 cites W2798588639 @default.
- W1566398300 cites W594463866 @default.
- W1566398300 doi "https://doi.org/10.5555/1496770.1496895" @default.
- W1566398300 hasPublicationYear "2009" @default.
- W1566398300 type Work @default.
- W1566398300 sameAs 1566398300 @default.
- W1566398300 citedByCount "7" @default.
- W1566398300 countsByYear W15663983002012 @default.
- W1566398300 countsByYear W15663983002013 @default.
- W1566398300 countsByYear W15663983002018 @default.
- W1566398300 crossrefType "proceedings-article" @default.
- W1566398300 hasAuthorship W1566398300A5005993212 @default.
- W1566398300 hasAuthorship W1566398300A5008961593 @default.
- W1566398300 hasConcept C114614502 @default.
- W1566398300 hasConcept C118615104 @default.
- W1566398300 hasConcept C123809776 @default.
- W1566398300 hasConcept C132525143 @default.
- W1566398300 hasConcept C149530733 @default.
- W1566398300 hasConcept C199594403 @default.
- W1566398300 hasConcept C203776342 @default.
- W1566398300 hasConcept C2780990831 @default.
- W1566398300 hasConcept C33923547 @default.
- W1566398300 hasConcept C76946457 @default.
- W1566398300 hasConcept C80899671 @default.
- W1566398300 hasConceptScore W1566398300C114614502 @default.
- W1566398300 hasConceptScore W1566398300C118615104 @default.
- W1566398300 hasConceptScore W1566398300C123809776 @default.
- W1566398300 hasConceptScore W1566398300C132525143 @default.
- W1566398300 hasConceptScore W1566398300C149530733 @default.
- W1566398300 hasConceptScore W1566398300C199594403 @default.
- W1566398300 hasConceptScore W1566398300C203776342 @default.
- W1566398300 hasConceptScore W1566398300C2780990831 @default.
- W1566398300 hasConceptScore W1566398300C33923547 @default.
- W1566398300 hasConceptScore W1566398300C76946457 @default.
- W1566398300 hasConceptScore W1566398300C80899671 @default.
- W1566398300 hasLocation W15663983001 @default.
- W1566398300 hasOpenAccess W1566398300 @default.
- W1566398300 hasPrimaryLocation W15663983001 @default.
- W1566398300 hasRelatedWork W14232539 @default.
- W1566398300 hasRelatedWork W1930391967 @default.
- W1566398300 hasRelatedWork W1978313715 @default.
- W1566398300 hasRelatedWork W2002209708 @default.
- W1566398300 hasRelatedWork W2045237424 @default.
- W1566398300 hasRelatedWork W2055443873 @default.
- W1566398300 hasRelatedWork W2081099898 @default.
- W1566398300 hasRelatedWork W2089023036 @default.
- W1566398300 hasRelatedWork W2111781422 @default.
- W1566398300 hasRelatedWork W2212115383 @default.
- W1566398300 hasRelatedWork W2437364787 @default.
- W1566398300 hasRelatedWork W2474686424 @default.
- W1566398300 hasRelatedWork W2743756977 @default.
- W1566398300 hasRelatedWork W2884495715 @default.
- W1566398300 hasRelatedWork W2963686871 @default.
- W1566398300 hasRelatedWork W3020532734 @default.
- W1566398300 hasRelatedWork W3073349878 @default.
- W1566398300 hasRelatedWork W3115176827 @default.
- W1566398300 hasRelatedWork W594463866 @default.
- W1566398300 hasRelatedWork W7615168 @default.
- W1566398300 isParatext "false" @default.
- W1566398300 isRetracted "false" @default.
- W1566398300 magId "1566398300" @default.
- W1566398300 workType "article" @default.