Matches in SemOpenAlex for { <https://semopenalex.org/work/W1566408183> ?p ?o ?g. }
- W1566408183 abstract "[1] The macroscopic flow equations used to predict two-phase flow typically utilizes a capillary pressure-saturation relationship determined under equilibrium conditions. Theoretical reasoning, experimental evidence, and numerical modeling results have indicated that when one fluid phase replaces another fluid, this relationship may not be unique but may depend on the rate at which the phase saturations change in response to changes in phase pressures. This nonuniqueness likely depends on a variety of factors including soil-fluid properties and possibly physical scale. To quantify this dependency experimentally, direct measurements of equilibrium and dynamic capillary pressure-saturation relationships were developed for two Ottawa sands with different grain sizes using a 20 cm long column. A number of replicate air-water experiments were conducted to facilitate statistical comparison of capillary pressure-saturation relationships. Water and air pressures and phase saturations were measured at three different vertical locations in the sand column under different desaturation rates (1) to measure local capillary pressure-saturation relationships (static and dynamic); (2) to quantify the dynamic coefficient τ, a measure of the magnitude of observed dynamic effects, as a function of water saturation for different grain sizes and desaturation rates; (3) to investigate the importance of grain size on measured dynamic effects; and (4) to assess the importance of sample scale on the magnitude of dynamic effects in capillary pressure. A comparison of the static and dynamic Pc-Sw relationships showed that at a given water saturation, capillary pressure measured under transient water drainage conditions is statistically larger than capillary pressure measured under equilibrium or static conditions, consistent with thermodynamic theory. The dynamic coefficient τ, used in the expression relating the static and dynamic capillary pressures to the desaturation rate was dependant on porous media mean grain size but not on the desaturation rate. Results also suggest that the magnitude of the dynamic coefficient did not increase with the increased averaging volume considered in this study, as has been reported in the literature. This work suggests that dynamic effects in capillary pressure should be included in numerical models used to predict multiphase flow in systems when saturations change rapidly, particularly in fine-grained soil systems (e.g., CO2 sequestration, enhanced oil recovery, air sparging for remediation)." @default.
- W1566408183 created "2016-06-24" @default.
- W1566408183 creator A5004306351 @default.
- W1566408183 creator A5007590182 @default.
- W1566408183 creator A5041649792 @default.
- W1566408183 creator A5052230740 @default.
- W1566408183 creator A5066567292 @default.
- W1566408183 date "2010-08-01" @default.
- W1566408183 modified "2023-09-30" @default.
- W1566408183 title "Experimental investigation of dynamic effects in capillary pressure: Grain size dependency and upscaling" @default.
- W1566408183 cites W1509560999 @default.
- W1566408183 cites W1615558382 @default.
- W1566408183 cites W1974610573 @default.
- W1566408183 cites W1988987674 @default.
- W1566408183 cites W1994789545 @default.
- W1566408183 cites W1995560830 @default.
- W1566408183 cites W1998729398 @default.
- W1566408183 cites W1999344546 @default.
- W1566408183 cites W2011779133 @default.
- W1566408183 cites W2024752518 @default.
- W1566408183 cites W2037883289 @default.
- W1566408183 cites W2044869647 @default.
- W1566408183 cites W2049957737 @default.
- W1566408183 cites W2062067172 @default.
- W1566408183 cites W2063922669 @default.
- W1566408183 cites W2071817764 @default.
- W1566408183 cites W2131736191 @default.
- W1566408183 cites W2137069203 @default.
- W1566408183 cites W2142055337 @default.
- W1566408183 cites W2148146848 @default.
- W1566408183 cites W2154117378 @default.
- W1566408183 cites W2162604832 @default.
- W1566408183 cites W2167979631 @default.
- W1566408183 cites W2168710012 @default.
- W1566408183 cites W4231921194 @default.
- W1566408183 cites W4253210064 @default.
- W1566408183 doi "https://doi.org/10.1029/2009wr008881" @default.
- W1566408183 hasPublicationYear "2010" @default.
- W1566408183 type Work @default.
- W1566408183 sameAs 1566408183 @default.
- W1566408183 citedByCount "76" @default.
- W1566408183 countsByYear W15664081832012 @default.
- W1566408183 countsByYear W15664081832013 @default.
- W1566408183 countsByYear W15664081832014 @default.
- W1566408183 countsByYear W15664081832015 @default.
- W1566408183 countsByYear W15664081832016 @default.
- W1566408183 countsByYear W15664081832017 @default.
- W1566408183 countsByYear W15664081832018 @default.
- W1566408183 countsByYear W15664081832019 @default.
- W1566408183 countsByYear W15664081832020 @default.
- W1566408183 countsByYear W15664081832021 @default.
- W1566408183 countsByYear W15664081832022 @default.
- W1566408183 countsByYear W15664081832023 @default.
- W1566408183 crossrefType "journal-article" @default.
- W1566408183 hasAuthorship W1566408183A5004306351 @default.
- W1566408183 hasAuthorship W1566408183A5007590182 @default.
- W1566408183 hasAuthorship W1566408183A5041649792 @default.
- W1566408183 hasAuthorship W1566408183A5052230740 @default.
- W1566408183 hasAuthorship W1566408183A5066567292 @default.
- W1566408183 hasBestOaLocation W15664081831 @default.
- W1566408183 hasConcept C105569014 @default.
- W1566408183 hasConcept C114614502 @default.
- W1566408183 hasConcept C121332964 @default.
- W1566408183 hasConcept C127313418 @default.
- W1566408183 hasConcept C159985019 @default.
- W1566408183 hasConcept C187320778 @default.
- W1566408183 hasConcept C192562407 @default.
- W1566408183 hasConcept C196806460 @default.
- W1566408183 hasConcept C28413391 @default.
- W1566408183 hasConcept C33923547 @default.
- W1566408183 hasConcept C48797263 @default.
- W1566408183 hasConcept C57879066 @default.
- W1566408183 hasConcept C6648577 @default.
- W1566408183 hasConcept C97355855 @default.
- W1566408183 hasConcept C9930424 @default.
- W1566408183 hasConceptScore W1566408183C105569014 @default.
- W1566408183 hasConceptScore W1566408183C114614502 @default.
- W1566408183 hasConceptScore W1566408183C121332964 @default.
- W1566408183 hasConceptScore W1566408183C127313418 @default.
- W1566408183 hasConceptScore W1566408183C159985019 @default.
- W1566408183 hasConceptScore W1566408183C187320778 @default.
- W1566408183 hasConceptScore W1566408183C192562407 @default.
- W1566408183 hasConceptScore W1566408183C196806460 @default.
- W1566408183 hasConceptScore W1566408183C28413391 @default.
- W1566408183 hasConceptScore W1566408183C33923547 @default.
- W1566408183 hasConceptScore W1566408183C48797263 @default.
- W1566408183 hasConceptScore W1566408183C57879066 @default.
- W1566408183 hasConceptScore W1566408183C6648577 @default.
- W1566408183 hasConceptScore W1566408183C97355855 @default.
- W1566408183 hasConceptScore W1566408183C9930424 @default.
- W1566408183 hasIssue "8" @default.
- W1566408183 hasLocation W15664081831 @default.
- W1566408183 hasOpenAccess W1566408183 @default.
- W1566408183 hasPrimaryLocation W15664081831 @default.
- W1566408183 hasRelatedWork W1544903284 @default.
- W1566408183 hasRelatedWork W1984446146 @default.
- W1566408183 hasRelatedWork W1988705859 @default.
- W1566408183 hasRelatedWork W2031237951 @default.
- W1566408183 hasRelatedWork W2357553191 @default.
- W1566408183 hasRelatedWork W2363756578 @default.