Matches in SemOpenAlex for { <https://semopenalex.org/work/W1566576499> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W1566576499 abstract "The global tourism industry has witnessed a significant growth in the past few decades. Many researchers have used different forecasting methods to predict future tourism demand. This study represented a major improvement over previous similar tourism forecasting studies. The author provided a detailed but practical treatment of the Box-Jenkins modeling and two kinds of artificial neural network (backpropagation network and radial basis function network) modeling on tourism demand forecasting across thirty time series (ten origin-destination pairs by three data frequencies). He also gave in-depth discussions on the implementation of the complicated Box-Jenkins methodology as well as the ANN modeling techniques in the context of international tourism demand forecasting. Major literature related to the Box-Jenkins and ANN methods in tourism demand forecasting/modeling in recent years was reviewed. More than 60 tourism demand forecasting models were evaluated. Point forecasts along with their 90% prediction intervals through the final Box-Jenkins and naive models were generated. It was found that the more sophisticated Box-Jenkins modeling was more accurate than the simple naive no-change method to forecast the seasonal international tourism demand in the study. For non-seasonal international tourism demand such as annual time series of tourist arrival data, the naive no-change method might be a better choice given short available annual series. The author also found that the Box-Jenkins modeling produced a significantly smaller MAPE errors than ANN modeling did and that both BPNN (backpropagation neural network) and RBFNN (radial basis function neural network) modeling techniques performed at the same level based on formal statistical procedures and more sophisticated measures on forecasting performance. The author also investigated data frequency issues with forecasting techniques. The results of this study suggested that quarterly tourism demand data might be more suitable (likely to perform better) for the ANN modeling when BPNN and RBFNN techniques were considered. Finally, unlike many previous studies in tourism demand forecasting that using simple ranking comparisons, this study invented an overall performance index (OPI) to assess forecasting techniques' overall performance. Both the new performance measure and formal statistical test procedures made the results of comparing different forecasting techniques more robust and convincing." @default.
- W1566576499 created "2016-06-24" @default.
- W1566576499 creator A5043255591 @default.
- W1566576499 creator A5044902004 @default.
- W1566576499 creator A5082744381 @default.
- W1566576499 date "2002-01-01" @default.
- W1566576499 modified "2023-09-26" @default.
- W1566576499 title "Advanced tourism demand forecasting: artificial neural network and box-jenkins modeling" @default.
- W1566576499 hasPublicationYear "2002" @default.
- W1566576499 type Work @default.
- W1566576499 sameAs 1566576499 @default.
- W1566576499 citedByCount "4" @default.
- W1566576499 countsByYear W15665764992013 @default.
- W1566576499 countsByYear W15665764992014 @default.
- W1566576499 crossrefType "book" @default.
- W1566576499 hasAuthorship W1566576499A5043255591 @default.
- W1566576499 hasAuthorship W1566576499A5044902004 @default.
- W1566576499 hasAuthorship W1566576499A5082744381 @default.
- W1566576499 hasConcept C119857082 @default.
- W1566576499 hasConcept C127413603 @default.
- W1566576499 hasConcept C151406439 @default.
- W1566576499 hasConcept C154945302 @default.
- W1566576499 hasConcept C155032097 @default.
- W1566576499 hasConcept C166957645 @default.
- W1566576499 hasConcept C18918823 @default.
- W1566576499 hasConcept C193809577 @default.
- W1566576499 hasConcept C205649164 @default.
- W1566576499 hasConcept C24338571 @default.
- W1566576499 hasConcept C2779343474 @default.
- W1566576499 hasConcept C41008148 @default.
- W1566576499 hasConcept C42475967 @default.
- W1566576499 hasConcept C50644808 @default.
- W1566576499 hasConcept C82257358 @default.
- W1566576499 hasConceptScore W1566576499C119857082 @default.
- W1566576499 hasConceptScore W1566576499C127413603 @default.
- W1566576499 hasConceptScore W1566576499C151406439 @default.
- W1566576499 hasConceptScore W1566576499C154945302 @default.
- W1566576499 hasConceptScore W1566576499C155032097 @default.
- W1566576499 hasConceptScore W1566576499C166957645 @default.
- W1566576499 hasConceptScore W1566576499C18918823 @default.
- W1566576499 hasConceptScore W1566576499C193809577 @default.
- W1566576499 hasConceptScore W1566576499C205649164 @default.
- W1566576499 hasConceptScore W1566576499C24338571 @default.
- W1566576499 hasConceptScore W1566576499C2779343474 @default.
- W1566576499 hasConceptScore W1566576499C41008148 @default.
- W1566576499 hasConceptScore W1566576499C42475967 @default.
- W1566576499 hasConceptScore W1566576499C50644808 @default.
- W1566576499 hasConceptScore W1566576499C82257358 @default.
- W1566576499 hasLocation W15665764991 @default.
- W1566576499 hasOpenAccess W1566576499 @default.
- W1566576499 hasPrimaryLocation W15665764991 @default.
- W1566576499 hasRelatedWork W1739105172 @default.
- W1566576499 hasRelatedWork W1966409477 @default.
- W1566576499 hasRelatedWork W2015122449 @default.
- W1566576499 hasRelatedWork W2054421594 @default.
- W1566576499 hasRelatedWork W2067284569 @default.
- W1566576499 hasRelatedWork W2084776485 @default.
- W1566576499 hasRelatedWork W2116427954 @default.
- W1566576499 hasRelatedWork W2166505250 @default.
- W1566576499 hasRelatedWork W2392314948 @default.
- W1566576499 hasRelatedWork W2541929603 @default.
- W1566576499 hasRelatedWork W2550199026 @default.
- W1566576499 hasRelatedWork W2585667993 @default.
- W1566576499 hasRelatedWork W2794095758 @default.
- W1566576499 hasRelatedWork W2810470535 @default.
- W1566576499 hasRelatedWork W3110685770 @default.
- W1566576499 hasRelatedWork W3121260070 @default.
- W1566576499 hasRelatedWork W3124368246 @default.
- W1566576499 hasRelatedWork W2156944431 @default.
- W1566576499 hasRelatedWork W2276044420 @default.
- W1566576499 hasRelatedWork W3121706288 @default.
- W1566576499 isParatext "false" @default.
- W1566576499 isRetracted "false" @default.
- W1566576499 magId "1566576499" @default.
- W1566576499 workType "book" @default.