Matches in SemOpenAlex for { <https://semopenalex.org/work/W1566643221> ?p ?o ?g. }
- W1566643221 endingPage "e187" @default.
- W1566643221 startingPage "e187" @default.
- W1566643221 abstract "We report on mechanical tests on interpenetrating-phase nanocomposite materials made by vacuum impregnation of nanoscale metal networks with a polymer. The metal component is nanoporous gold made by dealloying, whereas two epoxy resins and polyurethane are explored as the polymer component. The composites are strong and deformable in compression. Although previous observations invariably indicate tensile brittleness for nanoporous gold, composite samples made from cm-sized nanoporous samples enable macroscopic tensile and four-point bending tests that show ductility. This implies that the high strength of individual metal objects such as nanowires can now be incorporated into a strong and ductile material from which macroscopic things can be formed. In fact, a rule-of-mixture-type analysis of the stresses carried by the metal phase suggests quantitative agreement with data reported from separate experiments on small-scale gold nanostructures. Composites of nanoporous gold and polymers that exhibit both high strength and good ductility have been developed by researchers in Germany. Although nanoporous gold shows excellent deformability in compression, macroscopic samples undergo brittle failure in tension and bending. Now, Ke Wang at Hamburg University of Technology and co-workers have hit upon a new strategy for overcoming the poor ductility of nanocomposite gold — forming a composite by impregnating it with a polymer. They fabricated centimeter-sized samples of nanoporous gold vacuum-impregnated with two epoxy resins and polyurethane and demonstrate their ductility in macroscopic tensile and four-point bending tests. The plastic deformation behaviour was quantitatively consistent with a simple rule-of-mixture relationship. This approach permits the high strength of metal nanostructures to be incorporated in strong, ductile materials that can be used to form macroscopic objects. Nanoporous metals made by dealloying can take the form of macroscopic bodies that exhibit a uniform and highly interconnected network of nanoscale ‘ligaments’. Our study used this material as the reinforcement phase in novel interpenetrating-phase nanocomposites. Tensile tests on our cm-sized composite samples for the first time demonstrate tensile ductility in a nanoporous-metal-based material. Whereas the strength, σ, of pure nanoporous metal scales with the phase faction, ϕ, as σ ∝ ϕ3/2, the composite has a linear scaling relation σ ∝ ϕ that favors strengthening at small solid fraction. We find this strengthening also in quantitative agreement with the data behind the well-known ‘smaller is stronger’ of metal nanostructures. Thus, our material’s design strategy exploits the high strength of individual metal nano-objects such as nanowires for making a strong and ductile material from which macroscopic things can be formed." @default.
- W1566643221 created "2016-06-24" @default.
- W1566643221 creator A5008843365 @default.
- W1566643221 creator A5027545595 @default.
- W1566643221 creator A5029517613 @default.
- W1566643221 creator A5039833118 @default.
- W1566643221 creator A5065612586 @default.
- W1566643221 creator A5082637973 @default.
- W1566643221 date "2015-06-01" @default.
- W1566643221 modified "2023-10-01" @default.
- W1566643221 title "Nanoporous-gold-based composites: toward tensile ductility" @default.
- W1566643221 cites W1502106812 @default.
- W1566643221 cites W1883449737 @default.
- W1566643221 cites W1968404501 @default.
- W1566643221 cites W1978282347 @default.
- W1566643221 cites W1978333321 @default.
- W1566643221 cites W1983477761 @default.
- W1566643221 cites W1985194023 @default.
- W1566643221 cites W1987883370 @default.
- W1566643221 cites W1993923126 @default.
- W1566643221 cites W1995103691 @default.
- W1566643221 cites W1998728971 @default.
- W1566643221 cites W2011445141 @default.
- W1566643221 cites W2012000600 @default.
- W1566643221 cites W2015320702 @default.
- W1566643221 cites W2017479317 @default.
- W1566643221 cites W2019346312 @default.
- W1566643221 cites W2020855374 @default.
- W1566643221 cites W2030222599 @default.
- W1566643221 cites W2043737450 @default.
- W1566643221 cites W2050723460 @default.
- W1566643221 cites W2052403632 @default.
- W1566643221 cites W2058103359 @default.
- W1566643221 cites W2060859753 @default.
- W1566643221 cites W2066114701 @default.
- W1566643221 cites W2074176021 @default.
- W1566643221 cites W2076381469 @default.
- W1566643221 cites W2077308385 @default.
- W1566643221 cites W2081203715 @default.
- W1566643221 cites W2085738884 @default.
- W1566643221 cites W2085804738 @default.
- W1566643221 cites W2089190473 @default.
- W1566643221 cites W2090921914 @default.
- W1566643221 cites W2097803127 @default.
- W1566643221 cites W2115845234 @default.
- W1566643221 cites W2130886668 @default.
- W1566643221 cites W2134613426 @default.
- W1566643221 cites W2139245408 @default.
- W1566643221 cites W2147011913 @default.
- W1566643221 cites W2160868374 @default.
- W1566643221 cites W2161826148 @default.
- W1566643221 cites W2478819728 @default.
- W1566643221 cites W4249758367 @default.
- W1566643221 doi "https://doi.org/10.1038/am.2015.58" @default.
- W1566643221 hasPublicationYear "2015" @default.
- W1566643221 type Work @default.
- W1566643221 sameAs 1566643221 @default.
- W1566643221 citedByCount "55" @default.
- W1566643221 countsByYear W15666432212015 @default.
- W1566643221 countsByYear W15666432212016 @default.
- W1566643221 countsByYear W15666432212017 @default.
- W1566643221 countsByYear W15666432212018 @default.
- W1566643221 countsByYear W15666432212019 @default.
- W1566643221 countsByYear W15666432212020 @default.
- W1566643221 countsByYear W15666432212021 @default.
- W1566643221 countsByYear W15666432212022 @default.
- W1566643221 countsByYear W15666432212023 @default.
- W1566643221 crossrefType "journal-article" @default.
- W1566643221 hasAuthorship W1566643221A5008843365 @default.
- W1566643221 hasAuthorship W1566643221A5027545595 @default.
- W1566643221 hasAuthorship W1566643221A5029517613 @default.
- W1566643221 hasAuthorship W1566643221A5039833118 @default.
- W1566643221 hasAuthorship W1566643221A5065612586 @default.
- W1566643221 hasAuthorship W1566643221A5082637973 @default.
- W1566643221 hasBestOaLocation W15666432211 @default.
- W1566643221 hasConcept C104779481 @default.
- W1566643221 hasConcept C112950240 @default.
- W1566643221 hasConcept C136478896 @default.
- W1566643221 hasConcept C149912024 @default.
- W1566643221 hasConcept C159985019 @default.
- W1566643221 hasConcept C166595027 @default.
- W1566643221 hasConcept C171250308 @default.
- W1566643221 hasConcept C182508753 @default.
- W1566643221 hasConcept C192562407 @default.
- W1566643221 hasConcept C2776512210 @default.
- W1566643221 hasConcept C48940184 @default.
- W1566643221 hasConcept C521977710 @default.
- W1566643221 hasConcept C87210426 @default.
- W1566643221 hasConcept C92880739 @default.
- W1566643221 hasConceptScore W1566643221C104779481 @default.
- W1566643221 hasConceptScore W1566643221C112950240 @default.
- W1566643221 hasConceptScore W1566643221C136478896 @default.
- W1566643221 hasConceptScore W1566643221C149912024 @default.
- W1566643221 hasConceptScore W1566643221C159985019 @default.
- W1566643221 hasConceptScore W1566643221C166595027 @default.
- W1566643221 hasConceptScore W1566643221C171250308 @default.
- W1566643221 hasConceptScore W1566643221C182508753 @default.
- W1566643221 hasConceptScore W1566643221C192562407 @default.