Matches in SemOpenAlex for { <https://semopenalex.org/work/W1566709305> ?p ?o ?g. }
- W1566709305 abstract "We construct a locally geometric $infty$-stack $M_{Hod}(X,Perf)$ of perfect complexes with $lambda$-connection structure on a smooth projective variety $X$. This maps to $A ^1 / G_m$, so it can be considered as the Hodge filtration of its fiber over 1 which is $M_{DR}(X,Perf)$, parametrizing complexes of $D_X$-modules which are $O_X$-perfect. We apply the result of Toen-Vaquie that $Perf(X)$ is locally geometric. The proof of geometricity of the map $M_{Hod}(X,Perf) rightarrow Perf(X)$ uses a Hochschild-like notion of weak complexes of modules over a sheaf of rings of differential operators. We prove a strictification result for these weak complexes, and also a strictification result for complexes of sheaves of $O$-modules over the big crystalline site." @default.
- W1566709305 created "2016-06-24" @default.
- W1566709305 creator A5074123835 @default.
- W1566709305 date "2009-01-01" @default.
- W1566709305 modified "2023-10-14" @default.
- W1566709305 title "Geometricity of the Hodge Filtration on the ∞-stack of perfect complexes over XDR" @default.
- W1566709305 cites W1015172462 @default.
- W1566709305 cites W1490009633 @default.
- W1566709305 cites W1507692549 @default.
- W1566709305 cites W1510078069 @default.
- W1566709305 cites W1514363947 @default.
- W1566709305 cites W1515031671 @default.
- W1566709305 cites W1524038673 @default.
- W1566709305 cites W1550487895 @default.
- W1566709305 cites W1555431286 @default.
- W1566709305 cites W1570596834 @default.
- W1566709305 cites W1571072992 @default.
- W1566709305 cites W1581558669 @default.
- W1566709305 cites W1583674858 @default.
- W1566709305 cites W1590167121 @default.
- W1566709305 cites W1617138614 @default.
- W1566709305 cites W1645562868 @default.
- W1566709305 cites W1666577531 @default.
- W1566709305 cites W1668490013 @default.
- W1566709305 cites W1680171265 @default.
- W1566709305 cites W1701080804 @default.
- W1566709305 cites W1768699087 @default.
- W1566709305 cites W1816720100 @default.
- W1566709305 cites W1830249602 @default.
- W1566709305 cites W1882673066 @default.
- W1566709305 cites W192962078 @default.
- W1566709305 cites W1936971149 @default.
- W1566709305 cites W1963985754 @default.
- W1566709305 cites W1964901205 @default.
- W1566709305 cites W1967921481 @default.
- W1566709305 cites W1970393413 @default.
- W1566709305 cites W1971509177 @default.
- W1566709305 cites W1976427847 @default.
- W1566709305 cites W1978821765 @default.
- W1566709305 cites W1983745776 @default.
- W1566709305 cites W1984127637 @default.
- W1566709305 cites W1985348730 @default.
- W1566709305 cites W1985502046 @default.
- W1566709305 cites W1990738469 @default.
- W1566709305 cites W1992831671 @default.
- W1566709305 cites W1994942508 @default.
- W1566709305 cites W1996508305 @default.
- W1566709305 cites W1998161206 @default.
- W1566709305 cites W1999716734 @default.
- W1566709305 cites W2008664771 @default.
- W1566709305 cites W2010346873 @default.
- W1566709305 cites W2012284639 @default.
- W1566709305 cites W2015082070 @default.
- W1566709305 cites W2018775685 @default.
- W1566709305 cites W2022585163 @default.
- W1566709305 cites W2024272780 @default.
- W1566709305 cites W2024954356 @default.
- W1566709305 cites W2025428689 @default.
- W1566709305 cites W2027549187 @default.
- W1566709305 cites W2028695836 @default.
- W1566709305 cites W2030207616 @default.
- W1566709305 cites W2031763812 @default.
- W1566709305 cites W2033494588 @default.
- W1566709305 cites W2034901905 @default.
- W1566709305 cites W2036184000 @default.
- W1566709305 cites W2047413546 @default.
- W1566709305 cites W2049452854 @default.
- W1566709305 cites W2050015327 @default.
- W1566709305 cites W2052302312 @default.
- W1566709305 cites W2054414488 @default.
- W1566709305 cites W2054511625 @default.
- W1566709305 cites W2058823269 @default.
- W1566709305 cites W2064062999 @default.
- W1566709305 cites W2071417479 @default.
- W1566709305 cites W2073413525 @default.
- W1566709305 cites W2077137106 @default.
- W1566709305 cites W2079411541 @default.
- W1566709305 cites W2080002617 @default.
- W1566709305 cites W2082238794 @default.
- W1566709305 cites W2082569596 @default.
- W1566709305 cites W2082864593 @default.
- W1566709305 cites W2084051193 @default.
- W1566709305 cites W2085358806 @default.
- W1566709305 cites W2089976582 @default.
- W1566709305 cites W2093182772 @default.
- W1566709305 cites W2098824966 @default.
- W1566709305 cites W2109306467 @default.
- W1566709305 cites W2109547424 @default.
- W1566709305 cites W2112544010 @default.
- W1566709305 cites W2118660796 @default.
- W1566709305 cites W2122537708 @default.
- W1566709305 cites W2124303587 @default.
- W1566709305 cites W2126002823 @default.
- W1566709305 cites W2128721277 @default.
- W1566709305 cites W2131797002 @default.
- W1566709305 cites W2132622468 @default.
- W1566709305 cites W2133314243 @default.
- W1566709305 cites W2134023805 @default.
- W1566709305 cites W2136226659 @default.
- W1566709305 cites W2137256393 @default.