Matches in SemOpenAlex for { <https://semopenalex.org/work/W1566883816> ?p ?o ?g. }
- W1566883816 endingPage "66" @default.
- W1566883816 startingPage "56" @default.
- W1566883816 abstract "Summary 1. Understanding the distribution and ecology of episodic or mobile species requires us to address multiple potential biases, including spatial clustering of survey locations, imperfect detectability and partial availability for detection. These challenges have been addressed individually by previous modelling approaches, but there is currently no extension of the occupancy modelling framework that accounts for all three problems while estimating occupancy (ψ), availability for detection (i.e. use; θ) and detectability ( P ). 2. We describe a hierarchical Bayes multi‐scale occupancy model that simultaneously estimates site occupancy, use, and detectability, while accounting for spatial dependence through a state‐space approach based on repeated samples at multiple spatial or temporal scales. As an example application, we analyse the spatiotemporal distribution of the Louisiana waterthrush Seiurus motacilla with respect to catchment size and availability of potential prey based on data collected along Appalachian streams of southern West Virginia, USA. In spring 2009, single observers recorded detections of Louisiana waterthrush (henceforth, waterthrush) within 75 m of point‐count stations (i.e. sites) during four 5‐min surveys per site, with each survey broken into 1‐min intervals. 3. Waterthrushes were widely distributed (ψ range: 0·6–1·0) and were regularly using (θ range: 0·4–0·6) count circles along forested mountain streams. While accounting for detection biases and spatial dependence among nearby sampling sites, waterthrushes became more common as catchment area increased, and they became more available for detection as the per cent of the benthic macroinvertebrates that were of the orders Ephemeroptera, Plecoptera or Trichoptera (EPT) increased. These results lend some support to the hypothesis that waterthrushes are influenced by instream conditions as mediated by watershed size and benthic macroinvertebrate community composition. 4. Synthesis and applications. Although several available modelling techniques provide estimates of occupancy at one scale, hierarchical Bayes multi‐scale occupancy modelling provides estimates of distribution at two scales simultaneously while accounting for detection biases and spatial dependencies. Hierarchical Bayes multi‐scale occupancy models therefore hold significant potential for addressing complex conservation threats that operate at a landscape scale (e.g. climate change) and probably influence species distributions over multiple scales." @default.
- W1566883816 created "2016-06-24" @default.
- W1566883816 creator A5013847070 @default.
- W1566883816 creator A5014223323 @default.
- W1566883816 creator A5050190425 @default.
- W1566883816 creator A5052043637 @default.
- W1566883816 date "2011-01-07" @default.
- W1566883816 modified "2023-10-17" @default.
- W1566883816 title "Addressing challenges when studying mobile or episodic species: hierarchical Bayes estimation of occupancy and use" @default.
- W1566883816 cites W115472308 @default.
- W1566883816 cites W1575393310 @default.
- W1566883816 cites W1598636167 @default.
- W1566883816 cites W1856759137 @default.
- W1566883816 cites W1964532093 @default.
- W1566883816 cites W1965497196 @default.
- W1566883816 cites W1969709262 @default.
- W1566883816 cites W1969858407 @default.
- W1566883816 cites W1985025719 @default.
- W1566883816 cites W1992621977 @default.
- W1566883816 cites W1992661960 @default.
- W1566883816 cites W2003509608 @default.
- W1566883816 cites W2008457745 @default.
- W1566883816 cites W2008989125 @default.
- W1566883816 cites W2024528899 @default.
- W1566883816 cites W2026263166 @default.
- W1566883816 cites W2028346612 @default.
- W1566883816 cites W2032835008 @default.
- W1566883816 cites W2033830980 @default.
- W1566883816 cites W2042204548 @default.
- W1566883816 cites W2045014004 @default.
- W1566883816 cites W2053824218 @default.
- W1566883816 cites W2062348518 @default.
- W1566883816 cites W2062767992 @default.
- W1566883816 cites W2064972007 @default.
- W1566883816 cites W2068002455 @default.
- W1566883816 cites W2070612147 @default.
- W1566883816 cites W2075904404 @default.
- W1566883816 cites W2079715126 @default.
- W1566883816 cites W2080876301 @default.
- W1566883816 cites W2087911853 @default.
- W1566883816 cites W2092742335 @default.
- W1566883816 cites W2093516141 @default.
- W1566883816 cites W2095982103 @default.
- W1566883816 cites W2097601813 @default.
- W1566883816 cites W2098075515 @default.
- W1566883816 cites W2100323608 @default.
- W1566883816 cites W2104912084 @default.
- W1566883816 cites W2106447230 @default.
- W1566883816 cites W2107504211 @default.
- W1566883816 cites W2116665868 @default.
- W1566883816 cites W2118477911 @default.
- W1566883816 cites W2121361340 @default.
- W1566883816 cites W2128482065 @default.
- W1566883816 cites W2131652537 @default.
- W1566883816 cites W2140037112 @default.
- W1566883816 cites W2143629719 @default.
- W1566883816 cites W2144356599 @default.
- W1566883816 cites W2150203755 @default.
- W1566883816 cites W2153804932 @default.
- W1566883816 cites W2154563276 @default.
- W1566883816 cites W2166329055 @default.
- W1566883816 cites W2168164420 @default.
- W1566883816 cites W2170565777 @default.
- W1566883816 cites W2175882551 @default.
- W1566883816 cites W2178222620 @default.
- W1566883816 cites W2181100627 @default.
- W1566883816 doi "https://doi.org/10.1111/j.1365-2664.2010.01921.x" @default.
- W1566883816 hasPublicationYear "2011" @default.
- W1566883816 type Work @default.
- W1566883816 sameAs 1566883816 @default.
- W1566883816 citedByCount "86" @default.
- W1566883816 countsByYear W15668838162012 @default.
- W1566883816 countsByYear W15668838162013 @default.
- W1566883816 countsByYear W15668838162014 @default.
- W1566883816 countsByYear W15668838162015 @default.
- W1566883816 countsByYear W15668838162016 @default.
- W1566883816 countsByYear W15668838162017 @default.
- W1566883816 countsByYear W15668838162018 @default.
- W1566883816 countsByYear W15668838162019 @default.
- W1566883816 countsByYear W15668838162020 @default.
- W1566883816 countsByYear W15668838162021 @default.
- W1566883816 countsByYear W15668838162022 @default.
- W1566883816 countsByYear W15668838162023 @default.
- W1566883816 crossrefType "journal-article" @default.
- W1566883816 hasAuthorship W1566883816A5013847070 @default.
- W1566883816 hasAuthorship W1566883816A5014223323 @default.
- W1566883816 hasAuthorship W1566883816A5050190425 @default.
- W1566883816 hasAuthorship W1566883816A5052043637 @default.
- W1566883816 hasBestOaLocation W15668838161 @default.
- W1566883816 hasConcept C100970517 @default.
- W1566883816 hasConcept C105795698 @default.
- W1566883816 hasConcept C106131492 @default.
- W1566883816 hasConcept C107673813 @default.
- W1566883816 hasConcept C140779682 @default.
- W1566883816 hasConcept C158709400 @default.
- W1566883816 hasConcept C159985019 @default.
- W1566883816 hasConcept C160331591 @default.
- W1566883816 hasConcept C18903297 @default.