Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567102972> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W1567102972 endingPage "3741" @default.
- W1567102972 startingPage "3725" @default.
- W1567102972 abstract "Consider a linear Cantor set <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=application/x-tex>K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which is the attractor of a linear iterated function system (i.f.s.) <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript j Baseline x equals rho Subscript j Baseline x plus b Subscript j> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>b</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>S_{j}x = rho _{j}x+b_{j}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=j equals 1 comma ellipsis comma m> <mml:semantics> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>j = 1,ldots ,m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, on the line satisfying the open set condition (where the open set is an interval). It is known that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=application/x-tex>K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has Hausdorff dimension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=alpha> <mml:semantics> <mml:mi>α<!-- α --></mml:mi> <mml:annotation encoding=application/x-tex>alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> given by the equation <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=sigma-summation Underscript j equals 1 Overscript m Endscripts rho Subscript j Superscript alpha Baseline equals 1> <mml:semantics> <mml:mrow> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>j</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>m</mml:mi> </mml:mrow> </mml:munderover> <mml:msubsup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>j</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>sum ^{m}_{j=1} rho ^{alpha }_{j} = 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper H Subscript alpha Baseline left-parenthesis upper K right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>H</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {H}_{alpha }(K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is finite and positive, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper H Subscript alpha> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>H</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>mathcal {H}_{alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes Hausdorff measure of dimension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=alpha> <mml:semantics> <mml:mi>α<!-- α --></mml:mi> <mml:annotation encoding=application/x-tex>alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We give an algorithm for computing <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper H Subscript alpha Baseline left-parenthesis upper K right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>H</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {H}_{alpha }(K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> exactly as the maximum of a finite set of elementary functions of the parameters of the i.f.s. When <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho 1 equals rho Subscript m> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>rho _{1} = rho _{m}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (or more generally, if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=log rho 1> <mml:semantics> <mml:mrow> <mml:mi>log</mml:mi> <mml:mo><!-- --></mml:mo> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>log rho _{1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=log rho Subscript m> <mml:semantics> <mml:mrow> <mml:mi>log</mml:mi> <mml:mo><!-- --></mml:mo> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>log rho _{m}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are commensurable), the algorithm also gives an interval <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding=application/x-tex>I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that maximizes the density <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d left-parenthesis upper I right-parenthesis equals script upper H Subscript alpha Baseline left-parenthesis upper K intersection upper I right-parenthesis slash StartAbsoluteValue upper I EndAbsoluteValue Superscript alpha> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>I</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>H</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:mi>I</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:mi>I</mml:mi> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>d(I) = mathcal {H}_{alpha }(K cap I)/|I|^{alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The Hausdorff measure <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper H Subscript alpha Baseline left-parenthesis upper K right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>H</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {H}_{alpha }(K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not a continuous function of the i.f.s. parameters. We also show that given the contraction parameters <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho Subscript j> <mml:semantics> <mml:msub> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>rho _{j}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, it is possible to choose the translation parameters <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=b Subscript j> <mml:semantics> <mml:msub> <mml:mi>b</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>j</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>b_{j}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in such a way that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper H Subscript alpha Baseline left-parenthesis upper K right-parenthesis equals StartAbsoluteValue upper K EndAbsoluteValue Superscript alpha> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>H</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {H}_{alpha }(K) = |K|^{alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, so the maximum density is one. Most of the results presented here were discovered through computer experiments, but we give traditional mathematical proofs." @default.
- W1567102972 created "2016-06-24" @default.
- W1567102972 creator A5014124521 @default.
- W1567102972 creator A5067488367 @default.
- W1567102972 date "1999-01-26" @default.
- W1567102972 modified "2023-10-18" @default.
- W1567102972 title "Exact Hausdorff measure and intervals of maximum density for Cantor sets" @default.
- W1567102972 cites W2032880942 @default.
- W1567102972 cites W2316422518 @default.
- W1567102972 doi "https://doi.org/10.1090/s0002-9947-99-01982-0" @default.
- W1567102972 hasPublicationYear "1999" @default.
- W1567102972 type Work @default.
- W1567102972 sameAs 1567102972 @default.
- W1567102972 citedByCount "55" @default.
- W1567102972 countsByYear W15671029722012 @default.
- W1567102972 countsByYear W15671029722013 @default.
- W1567102972 countsByYear W15671029722014 @default.
- W1567102972 countsByYear W15671029722015 @default.
- W1567102972 countsByYear W15671029722016 @default.
- W1567102972 countsByYear W15671029722017 @default.
- W1567102972 countsByYear W15671029722019 @default.
- W1567102972 countsByYear W15671029722020 @default.
- W1567102972 countsByYear W15671029722022 @default.
- W1567102972 countsByYear W15671029722023 @default.
- W1567102972 crossrefType "journal-article" @default.
- W1567102972 hasAuthorship W1567102972A5014124521 @default.
- W1567102972 hasAuthorship W1567102972A5067488367 @default.
- W1567102972 hasBestOaLocation W15671029721 @default.
- W1567102972 hasConcept C11413529 @default.
- W1567102972 hasConcept C154945302 @default.
- W1567102972 hasConcept C41008148 @default.
- W1567102972 hasConceptScore W1567102972C11413529 @default.
- W1567102972 hasConceptScore W1567102972C154945302 @default.
- W1567102972 hasConceptScore W1567102972C41008148 @default.
- W1567102972 hasIssue "9" @default.
- W1567102972 hasLocation W15671029721 @default.
- W1567102972 hasOpenAccess W1567102972 @default.
- W1567102972 hasPrimaryLocation W15671029721 @default.
- W1567102972 hasRelatedWork W2051487156 @default.
- W1567102972 hasRelatedWork W2351491280 @default.
- W1567102972 hasRelatedWork W2358668433 @default.
- W1567102972 hasRelatedWork W2371447506 @default.
- W1567102972 hasRelatedWork W2386767533 @default.
- W1567102972 hasRelatedWork W2390279801 @default.
- W1567102972 hasRelatedWork W2748952813 @default.
- W1567102972 hasRelatedWork W2899084033 @default.
- W1567102972 hasRelatedWork W303980170 @default.
- W1567102972 hasRelatedWork W3107474891 @default.
- W1567102972 hasVolume "351" @default.
- W1567102972 isParatext "false" @default.
- W1567102972 isRetracted "false" @default.
- W1567102972 magId "1567102972" @default.
- W1567102972 workType "article" @default.