Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567107593> ?p ?o ?g. }
- W1567107593 endingPage "e0132906" @default.
- W1567107593 startingPage "e0132906" @default.
- W1567107593 abstract "Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon’s implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike’s preceding ISI. As we show, the EIF’s exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron’s ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational theories about UP states during slow wave sleep and present possible extensions of the model in the context of spike-frequency adaptation." @default.
- W1567107593 created "2016-06-24" @default.
- W1567107593 creator A5015275083 @default.
- W1567107593 creator A5065483433 @default.
- W1567107593 date "2015-07-23" @default.
- W1567107593 modified "2023-09-25" @default.
- W1567107593 title "Random Sampling with Interspike-Intervals of the Exponential Integrate and Fire Neuron: A Computational Interpretation of UP-States" @default.
- W1567107593 cites W1536357320 @default.
- W1567107593 cites W1604195904 @default.
- W1567107593 cites W1853766545 @default.
- W1567107593 cites W1945424073 @default.
- W1567107593 cites W1949141612 @default.
- W1567107593 cites W1971037450 @default.
- W1567107593 cites W1971375081 @default.
- W1567107593 cites W1977369305 @default.
- W1567107593 cites W1981416079 @default.
- W1567107593 cites W1983101457 @default.
- W1567107593 cites W1996714928 @default.
- W1567107593 cites W2007876568 @default.
- W1567107593 cites W2020999234 @default.
- W1567107593 cites W2025687881 @default.
- W1567107593 cites W2026694347 @default.
- W1567107593 cites W2033382270 @default.
- W1567107593 cites W2038769137 @default.
- W1567107593 cites W2042150951 @default.
- W1567107593 cites W2067485452 @default.
- W1567107593 cites W2068848785 @default.
- W1567107593 cites W2072334497 @default.
- W1567107593 cites W2074091876 @default.
- W1567107593 cites W2079150153 @default.
- W1567107593 cites W2088553721 @default.
- W1567107593 cites W2089971339 @default.
- W1567107593 cites W2096034851 @default.
- W1567107593 cites W2100438317 @default.
- W1567107593 cites W2101532981 @default.
- W1567107593 cites W2109234859 @default.
- W1567107593 cites W2125733184 @default.
- W1567107593 cites W2128949090 @default.
- W1567107593 cites W2129046573 @default.
- W1567107593 cites W2130421154 @default.
- W1567107593 cites W2132937210 @default.
- W1567107593 cites W2136160685 @default.
- W1567107593 cites W2138704896 @default.
- W1567107593 cites W2141166794 @default.
- W1567107593 cites W2144146934 @default.
- W1567107593 cites W2152119945 @default.
- W1567107593 cites W2156565465 @default.
- W1567107593 cites W2157964542 @default.
- W1567107593 cites W2159171406 @default.
- W1567107593 cites W2163598552 @default.
- W1567107593 cites W2171746688 @default.
- W1567107593 cites W2172294131 @default.
- W1567107593 cites W4231081240 @default.
- W1567107593 cites W4238614602 @default.
- W1567107593 cites W4295831928 @default.
- W1567107593 doi "https://doi.org/10.1371/journal.pone.0132906" @default.
- W1567107593 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4512685" @default.
- W1567107593 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26203657" @default.
- W1567107593 hasPublicationYear "2015" @default.
- W1567107593 type Work @default.
- W1567107593 sameAs 1567107593 @default.
- W1567107593 citedByCount "1" @default.
- W1567107593 countsByYear W15671075932016 @default.
- W1567107593 crossrefType "journal-article" @default.
- W1567107593 hasAuthorship W1567107593A5015275083 @default.
- W1567107593 hasAuthorship W1567107593A5065483433 @default.
- W1567107593 hasBestOaLocation W15671075931 @default.
- W1567107593 hasConcept C105795698 @default.
- W1567107593 hasConcept C110925319 @default.
- W1567107593 hasConcept C11413529 @default.
- W1567107593 hasConcept C115903868 @default.
- W1567107593 hasConcept C120665830 @default.
- W1567107593 hasConcept C121332964 @default.
- W1567107593 hasConcept C121864883 @default.
- W1567107593 hasConcept C134306372 @default.
- W1567107593 hasConcept C140779682 @default.
- W1567107593 hasConcept C148043351 @default.
- W1567107593 hasConcept C151376022 @default.
- W1567107593 hasConcept C159985019 @default.
- W1567107593 hasConcept C180188523 @default.
- W1567107593 hasConcept C180761244 @default.
- W1567107593 hasConcept C186060115 @default.
- W1567107593 hasConcept C192562407 @default.
- W1567107593 hasConcept C204323151 @default.
- W1567107593 hasConcept C2781390188 @default.
- W1567107593 hasConcept C33923547 @default.
- W1567107593 hasConcept C41008148 @default.
- W1567107593 hasConcept C45374587 @default.
- W1567107593 hasConcept C59399137 @default.
- W1567107593 hasConcept C62520636 @default.
- W1567107593 hasConcept C76155785 @default.
- W1567107593 hasConcept C86803240 @default.
- W1567107593 hasConcept C94915269 @default.
- W1567107593 hasConcept C97355855 @default.
- W1567107593 hasConceptScore W1567107593C105795698 @default.
- W1567107593 hasConceptScore W1567107593C110925319 @default.
- W1567107593 hasConceptScore W1567107593C11413529 @default.
- W1567107593 hasConceptScore W1567107593C115903868 @default.