Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567118858> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W1567118858 endingPage "146" @default.
- W1567118858 startingPage "139" @default.
- W1567118858 abstract "This paper examines the problem of selecting a suitable subset of data to be labelled when building pattern classifiers from labelled and unlabelled data. The selection of representative set is guided by a clustering information and various options of allocating a number of samples within clusters and their distributions are investigated. The experimental results show that hybrid methods like Semi-supervised clustering with selective sampling can result in building a classifier which requires much less labelled data in order to achieve a comparable classification performance to classifiers built only on the basis of labelled data." @default.
- W1567118858 created "2016-06-24" @default.
- W1567118858 creator A5066089972 @default.
- W1567118858 creator A5083181106 @default.
- W1567118858 date "2004-01-01" @default.
- W1567118858 modified "2023-09-24" @default.
- W1567118858 title "Selective Sampling for Combined Learning from Labelled and Unlabelled Data" @default.
- W1567118858 cites W2018810220 @default.
- W1567118858 cites W2099189653 @default.
- W1567118858 cites W2129021863 @default.
- W1567118858 doi "https://doi.org/10.1007/978-3-540-45240-9_20" @default.
- W1567118858 hasPublicationYear "2004" @default.
- W1567118858 type Work @default.
- W1567118858 sameAs 1567118858 @default.
- W1567118858 citedByCount "1" @default.
- W1567118858 crossrefType "book-chapter" @default.
- W1567118858 hasAuthorship W1567118858A5066089972 @default.
- W1567118858 hasAuthorship W1567118858A5083181106 @default.
- W1567118858 hasBestOaLocation W15671188582 @default.
- W1567118858 hasConcept C106131492 @default.
- W1567118858 hasConcept C119857082 @default.
- W1567118858 hasConcept C124101348 @default.
- W1567118858 hasConcept C140779682 @default.
- W1567118858 hasConcept C153180895 @default.
- W1567118858 hasConcept C154945302 @default.
- W1567118858 hasConcept C2776145971 @default.
- W1567118858 hasConcept C31972630 @default.
- W1567118858 hasConcept C41008148 @default.
- W1567118858 hasConcept C58489278 @default.
- W1567118858 hasConcept C73555534 @default.
- W1567118858 hasConcept C81917197 @default.
- W1567118858 hasConcept C95623464 @default.
- W1567118858 hasConceptScore W1567118858C106131492 @default.
- W1567118858 hasConceptScore W1567118858C119857082 @default.
- W1567118858 hasConceptScore W1567118858C124101348 @default.
- W1567118858 hasConceptScore W1567118858C140779682 @default.
- W1567118858 hasConceptScore W1567118858C153180895 @default.
- W1567118858 hasConceptScore W1567118858C154945302 @default.
- W1567118858 hasConceptScore W1567118858C2776145971 @default.
- W1567118858 hasConceptScore W1567118858C31972630 @default.
- W1567118858 hasConceptScore W1567118858C41008148 @default.
- W1567118858 hasConceptScore W1567118858C58489278 @default.
- W1567118858 hasConceptScore W1567118858C73555534 @default.
- W1567118858 hasConceptScore W1567118858C81917197 @default.
- W1567118858 hasConceptScore W1567118858C95623464 @default.
- W1567118858 hasLocation W15671188581 @default.
- W1567118858 hasLocation W15671188582 @default.
- W1567118858 hasOpenAccess W1567118858 @default.
- W1567118858 hasPrimaryLocation W15671188581 @default.
- W1567118858 hasRelatedWork W2001652754 @default.
- W1567118858 hasRelatedWork W2379065761 @default.
- W1567118858 hasRelatedWork W2549006548 @default.
- W1567118858 hasRelatedWork W2807311372 @default.
- W1567118858 hasRelatedWork W2961085424 @default.
- W1567118858 hasRelatedWork W2972035100 @default.
- W1567118858 hasRelatedWork W3043252291 @default.
- W1567118858 hasRelatedWork W4214932115 @default.
- W1567118858 hasRelatedWork W98693656 @default.
- W1567118858 hasRelatedWork W3158004940 @default.
- W1567118858 isParatext "false" @default.
- W1567118858 isRetracted "false" @default.
- W1567118858 magId "1567118858" @default.
- W1567118858 workType "book-chapter" @default.