Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567218086> ?p ?o ?g. }
- W1567218086 abstract "The field of computational geometry is concerned with the design and analysis of geometric algorithms. For such algorithms, correctness and efficiency proofs are constructed, or problems are proven to be hard when no correct and efficient algorithms exist. In order to be able to do this, several assumptions about the input data for geometric algorithms are made. One of them is that this data is correct, with absolute certainty and infinite precision. In practical applications, this is often not the case, and as a result the value of these theoretical guarantees may be questionable. If we want to supply geometric algorithms with theoretical guarantees that are actually observed in practice, we have to loosen our assumptions about the input data to a more realistic level. Depending on the application, we may be confident that each data point, for example, is not more than some value epsilon away from its given position. We can then construct algorithms that are guaranteed to be correct and efficient as long as the input satisfies this weaker assumption. Furthermore, we can analyse how the imprecision in the input influences the accuracy of the output. In this thesis, we present new algorithms for classical geometric problems, that explicitly take data imprecision into account. These algorithms cannot produce the real answers to those problems, but instead produce information about the possible values that the answers can have. In several cases, this can be done without adding any extra cost to the asymptotic running times of the classical solutions. In some cases, though, computing this information is significantly more costly than using classical algorithms, and in some cases we prove that indeed no efficient algorithms exist." @default.
- W1567218086 created "2016-06-24" @default.
- W1567218086 creator A5035284028 @default.
- W1567218086 date "2009-10-19" @default.
- W1567218086 modified "2023-10-01" @default.
- W1567218086 title "Data Imprecision in Computational Geometry" @default.
- W1567218086 cites W100617722 @default.
- W1567218086 cites W1228752200 @default.
- W1567218086 cites W1501243125 @default.
- W1567218086 cites W1505652470 @default.
- W1567218086 cites W1519444547 @default.
- W1567218086 cites W1525225516 @default.
- W1567218086 cites W1536006666 @default.
- W1567218086 cites W1554187075 @default.
- W1567218086 cites W1558354590 @default.
- W1567218086 cites W156460238 @default.
- W1567218086 cites W1581530725 @default.
- W1567218086 cites W1607409405 @default.
- W1567218086 cites W1670665503 @default.
- W1567218086 cites W174419558 @default.
- W1567218086 cites W1922326618 @default.
- W1567218086 cites W1932005101 @default.
- W1567218086 cites W1970754929 @default.
- W1567218086 cites W1972369894 @default.
- W1567218086 cites W1979838628 @default.
- W1567218086 cites W1981114840 @default.
- W1567218086 cites W1981313592 @default.
- W1567218086 cites W1985148525 @default.
- W1567218086 cites W1993058867 @default.
- W1567218086 cites W1993609763 @default.
- W1567218086 cites W1994048022 @default.
- W1567218086 cites W1998932824 @default.
- W1567218086 cites W2000942618 @default.
- W1567218086 cites W2007553965 @default.
- W1567218086 cites W2008196645 @default.
- W1567218086 cites W2010416098 @default.
- W1567218086 cites W2015696135 @default.
- W1567218086 cites W2017723092 @default.
- W1567218086 cites W2020382469 @default.
- W1567218086 cites W2020590137 @default.
- W1567218086 cites W2025299767 @default.
- W1567218086 cites W2025426553 @default.
- W1567218086 cites W2026291033 @default.
- W1567218086 cites W2030844359 @default.
- W1567218086 cites W2032159439 @default.
- W1567218086 cites W2039757076 @default.
- W1567218086 cites W2041094480 @default.
- W1567218086 cites W2042179241 @default.
- W1567218086 cites W2043003284 @default.
- W1567218086 cites W2043127280 @default.
- W1567218086 cites W2043675696 @default.
- W1567218086 cites W2045574743 @default.
- W1567218086 cites W2050417465 @default.
- W1567218086 cites W2054236013 @default.
- W1567218086 cites W2055789678 @default.
- W1567218086 cites W2057025928 @default.
- W1567218086 cites W2059541050 @default.
- W1567218086 cites W2060513624 @default.
- W1567218086 cites W2064394826 @default.
- W1567218086 cites W2065213457 @default.
- W1567218086 cites W2065568351 @default.
- W1567218086 cites W2066577300 @default.
- W1567218086 cites W2069683521 @default.
- W1567218086 cites W2070789991 @default.
- W1567218086 cites W2071857538 @default.
- W1567218086 cites W2074131282 @default.
- W1567218086 cites W2074863496 @default.
- W1567218086 cites W2091505308 @default.
- W1567218086 cites W2098355410 @default.
- W1567218086 cites W2104800753 @default.
- W1567218086 cites W2105946172 @default.
- W1567218086 cites W2106378227 @default.
- W1567218086 cites W2106413026 @default.
- W1567218086 cites W2107423006 @default.
- W1567218086 cites W2108250208 @default.
- W1567218086 cites W2112429204 @default.
- W1567218086 cites W2120018535 @default.
- W1567218086 cites W2121040785 @default.
- W1567218086 cites W2121431945 @default.
- W1567218086 cites W2123140369 @default.
- W1567218086 cites W2123688402 @default.
- W1567218086 cites W2125334953 @default.
- W1567218086 cites W2128270135 @default.
- W1567218086 cites W2129566073 @default.
- W1567218086 cites W2135412646 @default.
- W1567218086 cites W2135640217 @default.
- W1567218086 cites W2137681154 @default.
- W1567218086 cites W2138289758 @default.
- W1567218086 cites W2142728440 @default.
- W1567218086 cites W2147499882 @default.
- W1567218086 cites W2150123893 @default.
- W1567218086 cites W2152196442 @default.
- W1567218086 cites W2152479402 @default.
- W1567218086 cites W2153204081 @default.
- W1567218086 cites W2156148354 @default.
- W1567218086 cites W2156153879 @default.
- W1567218086 cites W2156742832 @default.
- W1567218086 cites W2157529519 @default.
- W1567218086 cites W2161871333 @default.
- W1567218086 cites W2163786680 @default.